Menu

Blog

Archive for the ‘mobile phones’ category: Page 2

Aug 28, 2024

Engineers develop new two-dimensional, low-power-consumption field-effect transistor

Posted by in categories: mobile phones, robotics/AI

A team of electrical and computer engineers at Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, working with one colleague from City University of Hong Kong and another with Fudan University, has developed a new two-dimensional, low-power-consumption field-effect transistor (FET) that could allow smartphones to need recharging less often.

In their paper published in the journal Nature, the group describes how they overcame problems with high gate leakage and low dielectric strength that have stymied other researchers looking to create smaller and thinner computer chips. Two of the team members (Ziao Tian and Zengfeng Di) have published a Research Briefing, summarizing their work in the same journal issue.

Over the past several years, have been searching for new materials that will allow further miniaturization of silicon field-effect transistors. This will enable the addition of more features in phones and other devices without making them bigger. It is also a necessity for the development of 5G devices that will come with AI applications that are still in development.

Aug 28, 2024

Study of disordered rock salts leads to battery breakthrough

Posted by in categories: engineering, mobile phones, nuclear energy, sustainability, transportation

For the past decade, disordered rock salt has been studied as a potential breakthrough cathode material for use in lithium-ion batteries and a key to creating low-cost, high-energy storage for everything from cell phones to electric vehicles to renewable energy storage.

A new MIT study is making sure the material fulfills that promise.

Led by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering, a team of researchers describe a new class of partially disordered rock salt cathode, integrated with polyanions—dubbed disordered rock salt-polyanionic spinel, or DRXPS—that delivers at high voltages with significantly improved cycling stability.

Aug 23, 2024

Humans with Intelligence Amplification IA and Artificial Intelligence AI

Posted by in categories: mobile phones, robotics/AI

Everybody is talking about Artificial Intelligence (AI). It is in our computers, services and even our mobile phones. The AI composes our messages, predicts our moves and even takes photos for us. Are we – humans – going to become “obsolete” in a matter of years?! Maybe there is a last chance – Intelligence Amplification (IA).

While an AI needs to be developed from scratch, we humans, already have great intelligence thanks to countless years of evolution. A modern human’s brain is an awesome tool!

Among us, there are some geniuses, but imagine if everybody can become one. And not just a genius, but a super-genius. Smarter than every person who has ever lived before! This is the idea behind Intelligence Amplification. To use our intelligence as a base and to add computers to make us smarter beyond our imagination. A hybrid, a work of art!

Aug 22, 2024

India will assemble iPhone 16 Pro for the first time

Posted by in category: mobile phones

Apple is continuing to expand manufacturing in India, and the country will reportedly produce the iPhone 16 Pro and iPhone 16 Pro Max as well as the regular models.

Originally, India only manufactured older iPhones, and then chiefly because it avoided import tax. More recently in its expansion of production in the country, India has taken on manufacturing current models of the iPhone 15.

According to Bloomberg, Apple intends to expand still further. For the first time, India will manufacture the iPhone 16 Pro and iPhone 16 Pro Max.

Aug 22, 2024

Molecular wires with a twist

Posted by in categories: computing, mobile phones, particle physics, quantum physics

From the high-voltage wires that carry electricity over long distances, to the tungsten filaments in our incandescent lights, we may have become accustomed to thinking that electrical conductors are always made of metal. But for decades, scientists have been working on advanced materials based on carbon-based oligomer chains that can also conduct electricity. These include the organic light-emitting devices found in some modern smartphones and computers.

In quantum mechanics, electrons are not just point particles with definite positions, but rather can become ‘delocalized’ over a region. A molecule with a long stretch of alternating single-and double-bonds is said to have pi-conjugation, and conductive polymers operate by allowing delocalized electrons to hop between pi-conjugated regions – somewhat like a frog hopping between nearby puddles. However, the efficiency of this process is limited by differences in the energy levels of adjacent regions.

Fabricating oligomers and polymers with more uniform energy levels can lead to higher electrical conductivity, which is necessary for the development of new practical organic electronics, or even single-molecule wires.

Aug 19, 2024

Revolutionary Quantum Compass Could Soon Make GPS-Free Navigation a Reality

Posted by in categories: computing, mobile phones, particle physics, quantum physics, satellites

Peel apart a smartphone, fitness tracker or virtual reality headset, and inside you’ll find a tiny motion sensor tracking its position and movement. Bigger, more expensive versions of the same technology, about the size of a grapefruit and a thousand times more accurate, help navigate ships, airplanes and other vehicles with GPS assistance.

Now, scientists are attempting to make a motion sensor so precise it could minimize the nation’s reliance on global positioning satellites. Until recently, such a sensor — a thousand times more sensitive than today’s navigation-grade devices — would have filled a moving truck. But advancements are dramatically shrinking the size and cost of this technology.

For the first time, researchers from Sandia National Laboratories have used silicon photonic microchip components to perform a quantum sensing technique called atom interferometry, an ultra-precise way of measuring acceleration. It is the latest milestone toward developing a kind of quantum compass for navigation when GPS signals are unavailable.

Aug 13, 2024

An automated scheme for optical lens design looks set to enhance mobile phone cameras

Posted by in categories: computing, mobile phones, robotics/AI

An automated computational approach to the optical lens design of imaging systems promises to provide optimal solutions without human intervention, slashing the time and cost usually required. The result could be improved cameras for mobile phones with superior quality or new functionality.

Aug 10, 2024

Realme will introduce its 300W phone charging technology on August 14th

Posted by in category: mobile phones

Realme will introduce its 300W charging technology at an event in China on August 14th.

Aug 8, 2024

Missing Link Discovered: New Research Paves the Way for Charging Phones in Under a Minute

Posted by in categories: biological, chemistry, computing, engineering, mobile phones, particle physics, sustainability, transportation

CU Boulder scientists have found how ions move in tiny pores, potentially improving energy storage in devices like supercapacitors. Their research updates Kirchhoff’s law, with significant implications for energy storage in vehicles and power grids.

Imagine if your dead laptop or phone could be charged in a minute, or if an electric car could be fully powered in just 10 minutes. While this isn’t possible yet, new research by a team of scientists at CU Boulder could potentially make these advances a reality.

Published in the Proceedings of the National Academy of Sciences, researchers in Ankur Gupta’s lab discovered how tiny charged particles, called ions, move within a complex network of minuscule pores. The breakthrough could lead to the development of more efficient energy storage devices, such as supercapacitors, said Gupta, an assistant professor of chemical and biological engineering.

Aug 6, 2024

MemPal: Wearable Memory Assistant for Aging Population

Posted by in categories: biotech/medical, mobile phones, robotics/AI, wearables

We’re living in an aging society with cognitive loss placing stress on caregivers to monitor older adults struggling with memory decline.

MemPal is a wearable voice-based memory assistant that helps older adults live more independently and safely at home while also reducing caregiver burden. MemPal uses AI to automatically log the user’s actions in real-time based on visual context from a wearable camera without storing any image data, thereby preserving user privacy. With this activity log, MemPal helps older adults recall locations of misplaced objects and completion of past actions using simple voice-based queries such as “Hey Pal, where is my phone?” Additionally, MemPal provides context-based proactive safety reminders (e.g., “you may have forgotten to turn off the stove” or” you already took your medicine an hour ago”) and automatically tracks the completion on the MemPal app, allowing for remote monitoring by caregivers. Lastly MemPal can generate an automatic, summarized diary of activities for caregivers that may also prove useful for physicians to better understand patient behavior within their home.

MemPal was tested within the homes of 15 older adults (ages 65+). Our study demonstrated improved performance of object finding with audio-based assistance compared to no aid and positive overall user perceptions on the designed system. We discuss future design guidelines to adapt these types of wearable systems to various older adults’ needs.

Page 2 of 23312345678Last