Toggle light / dark theme

A novel brain-computer interface developed by a New York-based company called Synchron was just used to help a paralyzed patient send messages using their Apple device for the very first time. It’s a massive step up in an industry that has increasingly reported progress, which suggests that interfacing our minds with consumer devices could happen a lot sooner than some of us bargained for.

Brain-computer devices eavesdrop on brainwaves and convert these into commands. More or less the same neural signals that healthy people use to instruct their muscle fibers to twitch and enact a movement like walking or grasping an object can be used to command a robotic arm or move a cursor on a computer screen. It really is a phenomenal and game-changing piece of technology, with obvious benefits for those who are completely paralyzed and have few if any means of communicating with the outside world.

This type of technology is not exactly new. Scientists have been experimenting with brain-computer interfaces for decades, but it’s been in the last couple of years or so that we’ve actually come to see tremendous progress. Even Elon Musk has jumped on this bandwagon, founding a company called Neuralink with the ultimate goal of developing technology that allows people to transmit and receive information between their brain and a computer wirelessly — essentially connecting the human mind to devices. The idea is for anyone to be able to use this technology, even normal, healthy people, who want to augment their abilities by interfacing with machines. In 2021, Neuralink released a video of a monkey with an implanted Neuralink device playing pong, and the company wants to start clinical trials with humans soon.

Personal computing has gotten smaller and more intimate over the years—from the desktop computer to the laptop, to smartphones and tablets, to smart watches and smart glasses.

But the next generation of wearable computing technology—for health and wellness, social interaction and myriad other applications—will be even closer to the wearer than a watch or glasses: It will be affixed to the skin.

On-skin interfaces—sometimes known as “smart tattoos”—have the potential to outperform the sensing capabilities of current wearable technologies, but combining comfort and durability has proven challenging. Now, members of Cornell’s Hybrid Body Lab have come up with a reliable, skin-tight interface that’s easy to attach and detach, and can be used for a variety of purposes—from health monitoring to fashion.

A set of four malicious applications currently available in Google Play, the official store for the Android system, are directing users sites that steal sensitive information or generate ‘pay-per-click’ revenue for the operators.

Some of these sites offer victims to download fake security tools or updates, to trick users into installing the malicious files manually.

At the time of publishing, the apps are still present on Google Play under a developer account called Mobile apps Group, and have a total install count of more than one million.

The designed setup can transmit data at a rate of 16 kilobits per second for now.

Basem Shihada, an associate professor of Computer Science at the King Abdullah University of Sciences and Technology (KAUST), had been exploring data encoding into an artificial light source when he wondered if the same could be done with sunshine.

“I was simply hoping to use a cell phone camera to record a video of the encoded light stream to try to decode the video to retrieve the data; that’s when I thought, why not do the same with the sunlight?” Shihada said in a statement. “This would be much easier and can be done over the cell phone camera too. So we began to explore sunlight as an information carrier.”

We’ve already seen systems that wirelessly transmit data via patterns of flickering light. A Saudi Arabian team has created a less energy-intensive alternative, that could use modulated sunlight in place of traditional Wi-Fi.

Currently in development at the King Abdullah University of Science and Technology (KAUST), the system utilizes “smart glass” elements known as Dual-cell Liquid Crystal Shutters (DLSs). These rapidly alter the polarity of sunlight passing through them, and could conceivably be used in the plate glass windows of large rooms such as offices.

The back-and-forth changes in polarity serve the same purpose as the 1s and 0s in binary code, and are reportedly not perceptible to the human eye … although tests have shown that they can be detected and decoded by smartphone cameras. By contrast, changes in the intensity of artificial light – utilized in some other proposed systems – can be visually perceived as an unpleasant flickering effect if the frequency of the changes is too low.

Sunshine streaming through a window could be directly harnessed for wireless data transmission to electronic devices. KAUST researchers have designed a smart glass system that can modulate the sunlight passing through it, encoding data into the light that can be detected and decoded by devices in the room. The use of sunlight to send data would offer a greener mode of communication compared to conventional Wi-Fi or cellular data transmission.

Basem Shihada had been exploring data encoding into an artificial light source when he had the lightbulb moment to use sunshine. “I was simply hoping to use a to record a video of the encoded light stream to try to decode the video to retrieve the data; that’s when I thought, why not do the same with the ?” Shihada recalls. “This would be much easier and can be done over the cell phone camera too. So we began to explore sunlight as an information carrier,” he says.

The team has now designed a sunlight communication system comprised of two parts. “There is a light modulator that can be embedded in a glass surface and an in-room receiver,” says Osama Amin, a research scientist in Shihada’s labs.

We all found our coping strategies for riding out the pandemic in 2020. Biomedical engineer Gough Lui likes to tinker with tech—particularly vintage tech—and decided he’d try to recreate what it was like to connect to the Internet via dialup back in the late 1990s. He recorded the entire process in agonizing real time, dotted with occasional commentary.

Those of a certain age (ahem) well remember what it used to be like: even just booting up the computer required patience, particularly in the earlier part of the decade, when one could shower and make coffee in the time it took to boot up one’s computer from a floppy disk. One needed a dedicated phone line for the Internet connection, because otherwise an incoming call could disrupt the connection, forcing one to repeat the whole dialup process.

Transitioning away from fossil fuels.

The cost of turning sunlight into electricity has fallen more than 90 percent over the last decade. Solar is now the cheapest form of newly built energy generation. Job done? Not quite. Right now, solar works well at cost-competitive prices and can help us cut emissions significantly. But with less than five percent of the world’s electricity delivered by solar, we are just at the start.

The solar panels of 2022 are like the chunky mobile phones of the 1990s. Much more is possible with the same underlying technology.

Australia is likely to play a key role in global progress.


Scientists and materials researchers have invented a new and improved tool, “lab on a chip,” to measure light, according to a press release by Oregon State University (OSU) published on October 20.

An ultra-tiny device

The new tool consists of an ultra-tiny spectrometer that fits on a microchip and is operated using artificial intelligence. It now may lead to upgrades in everything from smartphone cameras to environmental monitoring.

UK and Russia are once again at loggerheads, this is after a report emerged that former Prime Minister Liz Truss cell phone was hacked when se was the Foreign Minister. UK Opposition politicians are now calling for an investigation after Daily Mail reported that suspected Kremlin agents were behind the hawk.

#UK #Russia #liztruss.

About Channel:

WION The World is One News, examines global issues with in-depth analysis. We provide much more than the news of the day. Our aim to empower people to explore their world. With our Global headquarters in New Delhi, we bring you news on the hour, by the hour. We deliver information that is not biased. We are journalists who are neutral to the core and non-partisan when it comes to the politics of the world. People are tired of biased reportage and we stand for a globalised united world. So for us the World is truly One.