Archive for the ‘nanotechnology’ category: Page 291
May 10, 2016
Common nanoparticle has subtle effects on oxidative stress genes
Posted by Karen Hurst in categories: biotech/medical, food, nanotechnology
A nanoparticle commonly used in food, cosmetics, sunscreen and other products can have subtle effects on the activity of genes expressing enzymes that address oxidative stress inside two types of cells. While the titanium dioxide (TiO2) nanoparticles are considered non-toxic because they don’t kill cells at low concentrations, these cellular effects could add to concerns about long-term exposure to the nanomaterial.
Researchers at the Georgia Institute of Technology used high-throughput screening techniques to study the effects of titanium dioxide nanoparticles on the expression of 84 genes related to cellular oxidative stress. Their work found that six genes, four of them from a single gene family, were affected by a 24-hour exposure to the nanoparticles.
The effect was seen in two different kinds of cells exposed to the nanoparticles: human HeLa cancer cells commonly used in research, and a line of monkey kidney cells. Polystyrene nanoparticles similar in size and surface electrical charge to the titanium dioxide nanoparticles did not produce a similar effect on gene expression.
May 10, 2016
Whispering gallery modes to control artificial atoms for quantum computing
Posted by Karen Hurst in categories: computing, nanotechnology, particle physics, quantum physics
Subscribe! Receive a convenient email notification whenever a new Nanowerk Nanotechnology Spotlight posts.
Become a Spotlight guest author! Have you just published a scientific paper or have other exciting developments to share with the nanotechnology community? Here is how to publish on nanowerk.com.
May 9, 2016
Photonics researchers create first nanoscale ‘optical parametric amplifier’
Posted by Karen Hurst in categories: energy, nanotechnology
Nice
Rice University photonics researchers have unveiled a new nanoparticle amplifier that can generate infrared light and boost the output of one light by capturing and converting energy from a second light.
The innovation, the latest from Rice’s Laboratory for Nanophotonics (LANP), is described online in a paper in the American Chemical Society journal Nano Letters (“Toward Surface Plasmon-Enhanced Optical Parametric Amplification (SPOPA) with Engineered Nanoparticles: A Nanoscale Tunable Infrared Source”). The device functions much like a laser, but while lasers have a fixed output frequency, the output from Rice’s nanoscale “optical parametric amplifier” (OPA) can be tuned over a range of frequencies that includes a portion of the infrared spectrum.
Continue reading “Photonics researchers create first nanoscale ‘optical parametric amplifier’” »
May 9, 2016
Samsung’s Quantum Dot TV Tech to Find Medical Applications
Posted by Karen Hurst in categories: bioengineering, chemistry, electronics, food, nanotechnology, quantum physics
Samsung get into the cancer treatment space with their own Q-Dot technology? Another reason for the FDA to show up in tech’s backyard; lookout for all those future federal and state regs & compliance training that will be coming that eats up 20 hours each month of your scientists and engineering talent’s time.
For a lot of users, Samsung might be known best for their smartphones and other mobile devices, but the company is so much more than that. Many of you reading this might have one of Samsung’s Super HD TV sets, a curved Samsung TV or some other model of theirs. Next to smartphones one of their more popular consumer electronics is of course of TVs, and with the advent of new technology such as Quantum Dot, Samsung is getting even better at producing a great image. One area that you might expect to find this Quantum Dot technology being used is for medical uses, but that’s just what researchers have been exploring recently.
Explaining a Quantum Dot can become quite tricky, but to cut a long story short, they are semiconductors that are so small they register at the nanoscale side of things. In terms of Quantum Dots used in television displays, it’s their ability to precisely tune to a specific and exact part of the color spectrum that makes them so attractive, not to mention their much lower power draw. Now, Kim Sung-jee, a professor of the Chemistry department at Pohang University of Science and Technology (POSTECH), has said that “when combining protein which clings to cancer cells and quantum dots, it can be used to seek out cancer cells in the body”. It’s reasoned that the potential for these Quantum Dots to be so precise in terms of color reproduction can help physicians track down certain cancer cells.
Continue reading “Samsung’s Quantum Dot TV Tech to Find Medical Applications” »
May 5, 2016
Lele flagella motor research develops novel insights in cellular mechanics
Posted by Karen Hurst in categories: biotech/medical, electronics, engineering, nanotechnology
Using bacteria to aid in the design of superior biomedical implants capable of resisting colonization by infectious bugs.
Dr. Pushkar Lele, assistant professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, is developing novel insights in cellular mechanics with bacteria to aid in the design of superior biomedical implants capable of resisting colonization by infectious bugs. Lele’s group also focuses on unraveling the fundamental principles underlying interactions in biological soft-matter to build bio-nanotechnology-based molecular machines. Lele’s lab currently focuses on a unique electric rotary device found in bacteria — the flagellar motor.
According to Lele, it is well established how motile bacteria employ flagellar motors to swim and respond to chemical stimulation. This allows bacteria to search for nutrients and evade harmful chemicals. However, in his recent work, Lele has now demonstrated that the motor is also sensitive to mechanical stimulation and identified the protein components responsible for the response. Sensing initiates a sensitive control of the assemblies of numerous proteins that combine to form the motor. Control over motor assemblies facilitates fine-tuning of cellular behavior and promotes chances of survival in a variety of environments.
Continue reading “Lele flagella motor research develops novel insights in cellular mechanics” »
May 5, 2016
Iridium Oxide Nanoparticles Used to Harvest Hydrogen
Posted by Karen Hurst in categories: chemistry, nanotechnology, particle physics, space
Iridium oxide (IrO2) nanoparticles are useful electrocatalysts for splitting water into oxygen and hydrogen — a clean source of hydrogen for fuel and power. However, its high cost demands that researchers find the most efficient structure for IrO2 nanoparticles for hydrogen production.
A study conducted by a team of researchers at the U.S. Department of Energy’s (DOE’s) Argonne National Laboratory, published in Journal of Materials Chemistry A, describes a new empirical interatomic potential that models the IrO2 properties important to catalytic activity at scales relevant to technology development. Also known as a force field, the interatomic potential is a set of values describing the relationship between structure and energy in a system based on its configuration in space. The team developed their new force field based on the MS-Q force field.
Continue reading “Iridium Oxide Nanoparticles Used to Harvest Hydrogen” »
May 4, 2016
Unique nano-capsules promise the targeted drug delivery
Posted by Karen Hurst in categories: biotech/medical, nanotechnology, physics
Gotta luv this.
An international team of researchers including the Lomonosov Moscow State University physicists has developed a completely new type of drug carrier for targeted delivery to the sick organ — the gel nano-capsules with a double shell. The results of the study were published in Scientific Reports.
May 4, 2016
Kiel’s Researchers Explore Nanostructure of Animal Cells
Posted by Karen Hurst in category: nanotechnology
Results are in from a study on the similarities and differences of the nanostructure surfaces.
There is a clear difference between a snake’s skin and moth’s eyes. Scientists at Kiel University have developed a new technique that brings this so-called ‘apples and oranges’ to a common level. This unique approach has given way to an entirely new and comparative outlook on biological surfaces, and provides a better understanding of how these surfaces actually work.
May 3, 2016
Scientists Develop Powerful Bio-Compatible Nano-Motor
Posted by Karen Hurst in categories: biotech/medical, nanotechnology
Cambridge’s new nano-scale light-powered piston engine that may one day energize devices to treat diseases directly or deliver drugs.
At the University of Cambridge researchers have developed a nano-scale light-powered piston engine that may one day energize devices to treat diseases directly or deliver drugs in powerful new ways. The device consists of charged gold nanoparticles within a polymer that bends and relaxes in response to heat changes. The polymer absorbs water when cooled, expanding in size, while heating the gold nanoparticles using a laser raises the temperature of the polymer, shedding the absorbed water and relaxing in response. This process happens in a fraction of a second, and as long as a laser is made to flip between being on and off, the engine keeps working.
According to the researchers, the force generated given the weight of the device is quite huge, at least a hundred times greater than existing motors or even muscle cells.
Continue reading “Scientists Develop Powerful Bio-Compatible Nano-Motor” »