Menu

Blog

Archive for the ‘nanotechnology’ category: Page 5

Dec 11, 2024

Material that “will change the world” is declared safe for humans

Posted by in categories: nanotechnology, particle physics

A nanotechnology material called graphene has captured attention worldwide, with many scientists dubbing it the latest “wonder material” with the potential to have an enormous human impact.

Graphene’s structure, made of carbon atoms arranged in a thin sheet, has properties that make it a strong contender to revolutionize many industries.

It’s often regarded as the thinnest and strongest material discovered so far, showing flexibility that few other materials can match. Its potential uses range from improving electronic devices to creating better ways to clean water.

Dec 11, 2024

Nanostructured two-dimensional gold monolayers expand possibilities for catalysis, electronics, and energy conversion

Posted by in categories: energy, engineering, nanotechnology

Researchers have created nearly freestanding nanostructured two-dimensional (2D) gold monolayers, an impressive feat of nanomaterial engineering that could open up new avenues in catalysis, electronics, and energy conversion.

The research has been published in Nature Communications.

Gold is an inert metal which typically forms a solid three-dimensional (3D) structure. However, in its 2D form, it can unlock extraordinary properties, such as unique electronic behaviors, enhanced surface reactivity, and immense potential for revolutionary applications in catalysis and .

Dec 11, 2024

Controlling matter at the atomic level: University of Bath breakthrough

Posted by in categories: chemistry, nanotechnology, particle physics

Controlling matter at the atomic level has taken a major step forward, thanks to groundbreaking nanotechnology research by an international team of scientists led by physicists at the University of Bath.

This advancement has profound implications for fundamental scientific understanding. It is also likely to have important practical applications, such as transforming the way researchers develop new medications.

Continue reading “Controlling matter at the atomic level: University of Bath breakthrough” »

Dec 10, 2024

Novel mixture of mRNA in nanoparticles show therapeutic potential against tumor progression

Posted by in categories: biotech/medical, nanotechnology

Therapeutic mRNAs offer great potential as a versatile and precise tool against cancer and other diseases. However, the therapeutic effectiveness is limited by the poor translation uptake of naked mRNA. To circumvent this challenge, researchers from VIB, VUB, Ghent University, and eTheRNA Immunotherapies developed an immunotherapeutic platform based on lipid-based nanoparticles (LNPs).

In different cancer models, applying a novel mixture of immunotherapeutic mRNA encapsulated in LNPs led to a clearly improved therapeutic efficacy with limited side effects. This proves the added value of the platform to the development of effective mRNA immunotherapies. The work is published in the journal Nature Communications.

The COVID-19 pandemic and recent Nobel Prize recognition have spotlighted mRNA therapies as a promising approach for diseases like cancer. With precision, scalability, and controlled , mRNA-based immunotherapy can encode proteins that stimulate the immune system to target and destroy cancer cells. Yet, naked mRNA is unstable, prone to degradation, and poorly absorbed by cells, limiting its effectiveness. This makes the development of reliable delivery methods essential for the future success of mRNA immunotherapies.

Dec 10, 2024

Quantum mechanical principle of strong coupling leads to better optical sensors

Posted by in categories: mathematics, nanotechnology, quantum physics

A team of researchers from the University of Cologne, Hasselt University (Belgium) and the University of St Andrews (Scotland) has succeeded in using the quantum mechanical principle of strong light-matter coupling for an optical technology that overcomes the long-standing problem of angular dependence in optical systems.

The study, “Breaking the angular dispersion limit in thin film optics by ultra-strong light-matter coupling,” published in Nature Communications presents ultra-stable thin-film polariton filters that open new avenues in photonics, sensor technology, optical imaging and display technology.

The study at the University of Cologne was led by Professor Dr. Malte Gather, director of the Humboldt Center for Nano-and Biophotonics at the Department of Chemistry and Biochemistry of the Faculty of Mathematics and Natural Sciences.

Dec 9, 2024

Is DNA Data Storage Ready for Data Centers?

Posted by in categories: biotech/medical, computing, encryption, nanotechnology

Biobanks are an obvious use case for DNA data storage. “With this technology, you could convert a biobank that is the size of a football field into something that can fit with everything in the palm of your hand,” says Banal. With encapsulation technologies, the DNA samples can be stored at room temperature. Compared to storing samples in freezing conditions in conventional biobanks or data centers that require extensive cooling, this has significantly lower energy consumption.

Until recently, scientific and medical applications were the sole drivers behind storing data in DNA. New research could broaden its scope to cryptography and nanotechnology. Another interesting development is the emerging intersection of DNA data storage and DNA computing. Indexing methods for DNA data retrieval mentioned earlier are an early example of that. Today, one of the most pressing commercial drivers of the technology is the data centers.

As researchers and startups chip away at its limitations, DNA data storage is becoming a viable commercial solution for storing all kinds of data at scale. The DNA Data Storage Alliance, a consortium founded in 2020, counts legacy data storage giants such as Western Digital and Seagate among its members.

Dec 8, 2024

Vortex electric field discovery could impact quantum computing

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

A new vortex electric field with the potential to enhance future electronic, magnetic and optical devices has been observed by researchers from City University of Hong Kong (CityUHK) and local partners.

The research, “Polar and quasicrystal vortex observed in twisted-bilayer molybdenum disulfide” published in Science, is highly valuable as it can upgrade the operation of many devices, including strengthening memory stability and computing speed.

With further research, the discovery of the vortex electric field can also impact the fields of quantum computing, spintronics, and nanotechnology.

Dec 7, 2024

Decoding protein interactions to better understand how mutations contribute to disease

Posted by in categories: biotech/medical, chemistry, nanotechnology

Investigating how proteins interact is key to understanding how cells work and communicate. In a new study published in Nature Communications, FMI researchers have provided key insights into how protein interactions are governed and how mutations influence cellular functions.

Proteins are the molecular machines of life, performing tasks ranging from driving to orchestrating cell communication. For these tasks, proteins must bind to the right partners with precision, avoiding mispairings that could disrupt cellular processes and lead to disease.

Scientists have long been curious about how changes in the —the building blocks of proteins—can alter a protein’s binding capabilities. To investigate this question, researchers in the Diss lab analyzed the effects of all possible mutations in a single protein across its with an entire family of partner proteins. They focused on a protein called JUN, which plays a key role in DNA binding and cellular communication.

Dec 7, 2024

World’s First “Molecular Movie”: Witness DNA Becoming Life’s Blueprint in Real-Time

Posted by in categories: biotech/medical, nanotechnology

Using an innovative approach, EMBL scientists uncovered key interactions between molecular machines, potentially opening new avenues for drug development.

Choosing a film for a movie night is always a battle. Now imagine if you could pick one that provided a window into some of the most fundamental biological processes that keep us alive. For the first time ever, researchers have captured a real-time molecular movie to show how two essential cellular processes – transcription and translation – interact with each other in bacteria.

Continue reading “World’s First ‘Molecular Movie’: Witness DNA Becoming Life’s Blueprint in Real-Time” »

Dec 6, 2024

Silver nanoparticles trapped within a polymer matrix allow for precise color control in anti-counterfeiting technology

Posted by in categories: chemistry, engineering, nanotechnology, particle physics

In a significant advancement in the field of anti-counterfeiting technology, Professor Jiseok Lee and his research team in the School of Energy and Chemical Engineering at UNIST have developed a new hidden anti-counterfeiting technology, harnessing the unique properties of silver nanoparticles (AgNPs). The results are published in Advanced Materials.

“The technology we have developed holds significant promise in preventing the counterfeiting of valuable artworks and defense materials, particularly in scenarios where authenticity must be verified against potential piracy,” Professor Lee explained.

The team leveraged the inherent disadvantage of AgNPs, which tend to discolor upon exposure to UV light, to create a controlled color development process. By trapping silver nanoparticles within a , researchers can manipulate and, consequently, the color emitted under UV light. Larger polymer nets yield silver nanoparticles that appear yellow, while smaller nets produce a red hue, allowing for precise control of the resultant colors based on ingredient combinations.

Page 5 of 315First23456789Last