That was the year she learned to control a Nexus tablet with her brain waves, and literally took her life quality from 1980s DOS to modern era Android OS.
A brunette lady in her early 50s, patient T6 suffers from amyotrophic lateral sclerosis (also known as Lou Gehrig’s disease), which causes progressive motor neuron damage. Mostly paralyzed from the neck down, T6 retains her sharp wit, love for red lipstick and miraculous green thumb. What she didn’t have, until recently, was the ability to communicate with the outside world.
Liz Parrish isn’t your average CEO. A passionate advocate for change, her. company BioViva is leading the fight for healthy longevity with pioneering. gene therapies targeting Alzheimer’s, sarcopenia and even aging itself. Parrish dreams big, but she’s a woman of action. She’s even demonstrated. her commitment by testing cutting-edge therapies on herself. Could her. efforts change how we think about aging? Is gene therapy the future or are. we moving too fast? We caught up with the woman herself to find out more.
Consciousness — the internal dialogue that seems to govern one’s thoughts and actions — is far less powerful than people believe, serving as a passive conduit rather than an active force that exerts control, according to a new theory proposed by an SF State researcher.
Associate Professor of Psychology Ezequiel Morsella.
Haptics is a growing field that aims to allow our bodies to control and ultimately ‘feel’ our virtual identity. Instead of using the theorized mechanism of a neural computer link, haptic tech attaches sensors and stimuli to our body. A report by research firm Markets and Markets thinks haptic technology, which could soon include something like a glove that let’s you move a hand in cyberspace, will be worth 30 billion by 2020.
Haptic technology, also known as kinesthetic communication, sounds like something out of science fiction. But products, like the vibrating cell phone, have been out for decades. And there’s more advanced systems on the way. That’s partly because of another hyped field: virtual reality. With pioneering virtual reality headsets like the Oculus Rift poised for release next year, the question becomes: How to make this experience even more immersive.
A representation of a stable sequential working memory; different information items or memory patterns are shown in different colors. (credit: Image adopted from Rabinovich, M.I. et al. (2014))
Try to remember a phone number. You’re now using “sequential memory,” in which your mind processes a sequence of numbers, events, or ideas. It underlies how people think, perceive, and interact as social beings. To understand how sequential memory works, researchers have built mathematical models that mimic this process.
Treating the brain isn’t like the rest of the body. Your blood-brain barrier shields it; filtering the blood to ensure nothing untoward makes it through. This protection is normally a good thing, but it becomes a problem if you want to deliver therapeutic drugs through it. This method could be a solution.
Smuggling therapeutics
Many diseases like Parkinson’s and Alzheimer’s disease are extremely difficult to treat. Only very specific molecules can make it through the brain’s secure barrier, and most drugs don’t make the cut. This poses a challenge when you want to treat disease inside the brain, and so efforts have been focused on finding a way to overcome this. New research has now demonstrated a way of treating Parkinson’s disease with a surgical treatment that opens up a small route to bypass the barrier; essentially a smuggling hatch into your brain.
But it may offer advantages over these systems, which are often confused by changes to an environment. And researchers hope that the work will not only allow a more efficient way for robots to navigate but also provide neuroscientists a better understanding of place cells, grid cells and cognitive maps.
Remember that paralyzed guy from Southern California who managed to walk on his own accord thanks to a revolutionary technique that bridged the gap in his severed spinal column with a wireless Bluetooth link? A team of doctors at Ohio’s Case Western Reserve University have reportedly accomplished the same feat with a patient’s arms.
The team described its initial findings at a meeting of the Society for Neuroscience in Chicago on Tuesday. The system works much like that of the earlier team at UC Irvine: a brain-control interface (BCI) reads the patient’s brain waves emanating from his motor cortex, converts them into actionable electrical signals and wirelessly transmits them to an actuator “sewn into” the patient’s arm. This actuator is comprised of 16 filament wires that generate electrical impulses, which cause various muscle groups to contract when stimulated. The patient thinks about moving his arm and it does so — well, sorta.