Toggle light / dark theme

A new algorithm has been developed that will drastically reduce the time and effort needed to create induced pluripotent stem cells (iPSCs). As a result of this breakthrough, we can expect a dramatic revolution in regenerative medicine in the near future.

What if you could directly reprogram cells to develop into whatever you wished? What if you could take an undifferentiated, incipient cell, full of the unrealized potential to become any one of the many specialized cells in the human body, and nudge it into becoming ocular tissue, or neural cells, even a new heart to replace an old or damaged one?

This is the promise afforded by Mogrify, the result of the application of computational and mathematical science to the problems of medicine and biology. It was developed by an international collaboration of researchers from the Duke-NUS Medical School in Singapore, the University of Bristol in the United Kingdom, Monash University in Australia, and RIKEN in Japan. The new research was published online in the journal Nature Genetics.

Read more

Wow — luv what the Univ. CA San Diego is doing & its portable too. 1 step forward for BMI possibilities.


Researchers claim they have developed the world’s first portable brain monitoring system that works as well as laboratory equipment. The feat was achieved by researchers at the University of California San Diego who created a 64-channel wearable brain monitor.

Read more

BMI is an area that will only explode when the first set of successful tests are presented to the public. I suggest investors, technologists, and researchers keep an eye on this one because it’s own impact to the world is truly inmense especially when you realize BMI changes everything in who we view how we process and connect with others, business, our homes, public services, transportation, healthcare, etc.


Implantable brain-machine interfaces (BMI) that will allow their users to control computers with thoughts alone will soon going to be a reality. DARPA has announced its plans to make such wetware. The interface would not be more than two nickels placed one on the other.

These implantable chips as per the DARPA will ‘open the channel between the human brain and modern electronics’. Though DARPA researchers have earlier also made few attempts to come up with a brain-machine interface, previous versions were having limited working.

The wetware is being developed a part of the Neural Engineering System Design (NESD) program. The device would translate the chemical signals in neurons into digital code. Phillip Alvelda, the NESD program manager, said, “Today’s best brain-computer interface systems are like two supercomputers trying to talk to each other using an old 300-baud modem. Imagine what will become possible when we upgrade our tools to really open the channel between the human brain and modern electronics”.

Stanford used modified messenger RNA to extend the telomeres so the whole process if it translates effectively into humans — and the evidence is suggesting it will — would be pretty straightforward especially when you consider the degree of extension which is 1000 nucleotides and the fact that the telomerase which lengthens the telomeres is only active in the body for 48 hours which means there is no significant risk of cancer due to the limited time during which proliferation of the cells could take place.


It’s true that Lobsters defy the normal aging process which in humans increases the risk of heart disease, stroke, cancer, Alzheimer’s and diabetes in humans but not only that they actually become stronger and bigger with age each time they shed their shell whereas humans and other mammals are completely the opposite suffering muscle loss, stiffness and elevated risk of fractures etc. Lobsters just keep growing and can grow to a colossal size over the years there is information on a 95 year old 23 pounder (10.5kg) here http://www.cbsnews.com/news/95-year-old-lobster-featured-at-…estaurant/

Normally a lobster dies because it is eaten by a predator I.e us!, suffers an injury or gets a disease. we know the reason they remain fit and strong and it lies in their use of telomerase to protect their DNA and prevent their telomeres shortening and as a result protecting their cells from dying they also have a vast supply of stem cells which can turn into any into any type body of tissue and this will be one of our main tools for biomedical repairs in the future along with telomere lengthening as explained below because if we can extend our telomeres we will also hold one of the keys to life extension.

Based on current research it is technically possible and highly probable work on telomere lengthening at Stanford university will translate into humans giving us the health benefits currently confined to lobsters and the hydra. The primary concern with the lengthening of telomeres used to lie in the theoretically elevated risk of cancer but this problem does not apply based on the current research which you can see on the Stanford University website here https://med.stanford.edu/news/all-news/2015/01/telomere-exte…cells.html as a researcher in aging I consider this research and some supporting and complementary research which has taken place at Harvard coupled with a additional research relating to a compounds that is related to Rapamycin tends to indicate that we are finally making significant progress in addressing the diseases of aging. Interestingly shortening of telomeres was until recently perceived by many as being a result of aging and not causal but the research at Stanford clearly repudiates this and suggests that Dr Bill Andrews the leading researcher into telomeres was correct all the way along.

Read more

In a computational reconstruction of brain tissue in the hippocampus, Salk and UT-Austin scientists found the unusual occurrence of two synapses from the axon of one neuron (translucent black strip) forming onto two spines on the same dendrite of a second neuron (yellow). Separate terminals from one neuron’s axon are shown in synaptic contact with two spines (arrows) on the same dendrite of a second neuron in the hippocampus. The spine head volumes, synaptic contact areas (red), neck diameters (gray) and number of presynaptic vesicles (white spheres) of these two synapses are almost identical. (credit: Salk Institute)

Salk researchers and collaborators have achieved critical insight into the size of neural connections, putting the memory capacity of the brain far higher than common estimates. The new work also answers a longstanding question as to how the brain is so energy efficient, and could help engineers build computers that are incredibly powerful but also conserve energy.

“This is a real bombshell in the field of neuroscience,” says Terry Sejnowski, Salk professor and co-senior author of the paper, which was published in eLife. “We discovered the key to unlocking the design principle for how hippocampal neurons function with low energy but high computation power. Our new measurements of the brain’s memory capacity increase conservative estimates by a factor of 10 to at least a petabyte (1 quadrillion or 1015 bytes), in the same ballpark as the World Wide Web.”

Read more

Hot damn, our Ghost in the Shell future is getting closer by the day. DARPA announced on Tuesday that it is interested in developing wetware — implantable brain-machine interfaces (BMI) that will allow their users to control computers with their thoughts. The device, developed as part of the Neural Engineering System Design (NESD) program, would essentially translate the chemical signals in our neurons into digital code. What’s more, DARPA expects this interface to be no larger than two nickels stacked atop one another.

“Today’s best brain-computer interface systems are like two supercomputers trying to talk to each other using an old 300-baud modem,” Phillip Alvelda, the NESD program manager, said in a statement. “Imagine what will become possible when we upgrade our tools to really open the channel between the human brain and modern electronics.”

The advanced research agency hopes the device to make an immediate impact — you know, once it’s actually invented — in the medical field. Since the proposed BMI would connect to as many as a million individual neurons (a few magnitudes more than the 100 or so that current devices can link with), patients suffering from vision or hearing loss would see an unprecedented gain in the fidelity of their assistive devices. Patients who have lost limbs would similarly see a massive boost in the responsiveness and capabilities of their prosthetics.

Read more