Toggle light / dark theme

Johns Hopkins research sheds new light on how mammals track their position and orientation while moving, revealing that visual motion cues alone allow the brain to adjust and recalibrate its internal map even in the absence of stable visual landmarks.

Their results are published in Nature Neuroscience.

“When you move through space, you have a lot of competing telling you where you are and how fast you are going, and your brain has to make sense of that,” said study co-leader Noah Cowan, professor of mechanical engineering at the Whiting School of Engineering and director of the Locomotion in Mechanical and Biological Systems (LIMBS) Laboratory.

A UCLA Health study explored the traits of resilient individuals, discovering significant neural activities in the brain regions for cognition and emotional regulation, and healthy gut microbiome activities.

The research highlighted differences in microbiome metabolites and gene activity, indicating lower inflammation and better gut health in resilient people compared to less resilient individuals. This comprehensive approach may lead to interventions that enhance resilience to stress, possibly preventing various health issues.

Resilience and Health.

Some thoughts/speculations on panpsychism.


I have long suspected that panpsychism represents the most likely explanation of how consciousness works. My evidence for this claim is laid out below. That said, I am not an expert in philosophy of mind, so take this with a grain of salt. I am certainly open to constructive critiques, questions, and discussion as well!

Whether it’s a first-time visit to a zoo or when we learned to ride a bicycle, we have memories from our childhoods kept well into adult years. But what explains how these memories last nearly an entire lifetime?

A new study in the journal Science Advances, conducted by a team of international researchers, has uncovered a biological explanation for long-term memories. It centers on the discovery of the role of a molecule, KIBRA, that serves as a “glue” to other molecules, thereby solidifying memory formation.

“Previous efforts to understand how molecules store long-term memory focused on the individual actions of single molecules,” explains André Fenton, a professor of neural science at New York University and one of the study’s principal investigators. “Our study shows how they work together to ensure perpetual memory storage.”

Stanford’s new tiny, cheap laser:


Researchers have achieved a potentially groundbreaking innovation in laser technology by developing a titanium-sapphire (Ti: sapphire) laser on a chip. This new prototype is dramatically smaller, more efficient, and less expensive than its predecessors, marking a significant leap forward with a technology that has broad applications in industry, medicine, and beyond.

Ti: sapphire lasers are known for their unmatched performance in quantum optics, spectroscopy, and neuroscience due to their wide gain bandwidth and ultrafast light pulses. However, their bulky size and high cost have limited their widespread adoption. Traditional Ti: sapphire lasers occupy cubic feet in volume and can cost hundreds of thousands of dollars, in addition to requiring high-powered lasers costing $30,000 each to feed it the energy it needs to operate.

An international team led by researchers at the University of Toronto has found a new RNA virus that they believe is hitching a ride with a common human parasite.

The virus, called Apocryptovirus odysseus, along with 18 others that are closely related to it, was discovered through a computational screen of human neuron data — an effort aimed at elucidating the connection between RNA viruses and neuroinflammatory disease. The virus is associated with severe inflammation in humans infected with the parasite Toxoplasma gondii, leading the team to hypothesize that it exacerbates toxoplasmosis disease.

“We discovered A. odysseus in human neurons using the open-science Serratus platform to search through more than 150,000 RNA viruses” said Purav Gupta, first author on the study, recent high school graduate and current undergraduate student at U of T’s Donnelly Centre for Cellular and Biomolecular Research. “Serratus identifies RNA viruses from public data by flagging an enzyme called RNA-dependent RNA polymerase, which facilitates replication of viral RNA. This enzyme allows the virus to reproduce itself and for the infection to spread.”

But while medical research facilities are subject to privacy laws, private companies — that are amassing large caches of brain data — are not. Based on a study by The Neurorights Foundation, two-thirds of them are already sharing or selling the data with third parties. The vast majority of them also don’t disclose where the data is stored, how long they keep it, who has access to it, and what happens if there’s a security breach…

This is why Pauzauskie, Medical Director of The Neurorights Foundation, led the passage of a first-in-the-nation law in Colorado. It includes biological or brain data in the State Privacy Act, similar to fingerprints if the data is being used to identify people.

“This is a first step, but we still have a long way to go,” he says.

Philosopher Wilfrid Sellars had a term for the world as it appears, the “manifest image.” This is the world as we perceive it. In it, an apple is an apple, something red or green with a certain shape, a range of sizes, a thing that we can eat, or throw.

The manifest image can be contrasted with the scientific image of the world. Where the manifest image has colors, the scientific one has electromagnetic radiation of certain wavelengths. Where the manifest image has solid objects, like apples, the scientific image has mostly empty space, with clusters of elementary particles, held together in configurations due to a small number of fundamental interactions.

The scientific image is often radically different from the manifest image, although how different it is depends on what level of organization is being examined. For many purposes, including scientific ones, the manifest image, which is itself a predictive theory of the world at a certain level or organization, works just fine. For example, an ethologist, someone who studies animal behavior, can generally do so without having to concern themselves about quantum fields and their interactions.

Summary: Researchers made a significant discovery in the study of human brain evolution, identifying epiregulin as a key factor in the expansion of the human neocortex. By comparing brain development between mice and humans and utilizing 3D brain organoids, the team found that epiregulin promotes the division and expansion of stem cells, crucial for neocortex development.

This study, which utilized cutting-edge 3D culture technology, suggests that the quantity of epiregulin, rather than its presence or absence, distinguishes human brain development from that of other species, including primates like gorillas. The research offers new insights into what makes the human brain unique and underscores the value of innovative methodologies in understanding complex evolutionary processes.

Neurotech startup Paradromics is set to commence human trials of its brain implant in 2025, intensifying the competition in the emerging brain-computer interface (BCI) market.

This move positions Paradromics against Elon Musk’s Neuralink, which has been at the forefront of public attention in this domain.

Paradromics’ CEO and founder, Matt Angle, in an interview with CNBC Tech, expressed his enthusiasm about the potential of brain-computer interfaces.