Toggle light / dark theme

Nerve cells have amazing strategies to save energy and still perform the most important of their tasks. Researchers from the University Hospital Bonn (UKB) and the University of Bonn as well as the University Medical Center Göttingen found that the neuronal energy conservation program determines the location and number of messenger RNA (mRNA) and proteins and differs depending on the length, longevity and other properties of the respective molecule. The work has now been published in Nature Communications.

We have all experienced the need to save energy in recent years. To do this, we all had to come up with strategies to save energy while still meeting our most important needs.

Our are facing a similar dilemma: They have to supply their synapses, i.e., their contact points with other neurons, but also organize their in such a way that they don’t produce too much or too little proteins.

Many describe this as the experience of seeing their life ‘flash before their eyes.’

The recording was made when an 87-year-old patient underwent cardiac arrest while being treated for epilepsy.

Doctors had strapped a device on his head to monitor brain activity, but the man died during the process.

Two hundred million years ago, our mammal ancestors developed a new brain feature: the neocortex. This stamp-sized piece of tissue (wrapped around a brain the size of a walnut) is the key to what humanity has become. Now, futurist Ray Kurzweil suggests, we should get ready for the next big leap in brain power, as we tap into the computing power in the cloud.

TEDTalks is a daily video podcast of the best talks and performances from the TED Conference, where the world’s leading thinkers and doers give the talk of their lives in 18 minutes (or less). Look for talks on Technology, Entertainment and Design — plus science, business, global issues, the arts and much more.
Find closed captions and translated subtitles in many languages at http://www.ted.com/translate.

Follow TED news on Twitter: / tednews.
Like TED on Facebook: / ted.

Xenon gas inhalation reduced neurodegeneration and boosted protection in preclinical models of Alzheimer’s disease. Most treatments being pursued today to protect against Alzheimer’s disease focus on amyloid plaques and tau tangles that accumulate in the brain, but new research from Mass General Brigham and Washington University School of Medicine in St. Louis points to a novel — and noble — approach: using Xenon gas. The study found that Xenon gas inhalation suppressed neuroinflammation, reduced brain atrophy, and increased protective neuronal states in mouse models of Alzheimer’s disease. Results are published in Science Translational Medicine, and a phase 1 clinical trial of the treatment in healthy volunteers will begin in early 2025.

“It is a very novel discovery showing that simply inhaling an inert gas can have such a profound neuroprotective effect,” said senior and co-corresponding author Oleg Butovsky, PhD, of the Ann Romney Center for Neurologic Diseases at Brigham and Women’s Hospital (BWH), a founding member of the Mass General Brigham healthcare system. “One of the main limitations in the field of Alzheimer’s disease research and treatment is that it is extremely difficult to design medications that can pass the blood-brain barrier — but Xenon gas does. We look forward to seeing this novel approach tested in humans.”

“It is exciting that in both animal models that model different aspects of Alzheimer’s disease, amyloid pathology in one model and tau pathology in another model, that Xenon had protective effects in both situations,” said senior and co-corresponding author David M. Holtzman, MD, from Washington University School of Medicine in St. Louis.

Weill Cornell Medicine investigators have identified in a preclinical model a specific brain circuit whose inhibition appears to reduce anxiety without side effects. Their work suggests a new target for treating anxiety disorders and related conditions and demonstrates a general strategy, based on a method called photopharmacology, for mapping drug effects on the brain.

In their study, published Jan. 28 in Neuron, the researchers examined the effects of experimental drug compounds that activate a type of brain-cell receptor called the metabotropic glutamate receptor 2 (mGluR2). While these receptors are found on neurons within many brain circuits, the team showed that activating them in a specific circuit terminating in an emotion-related brain region called the amygdala reduces signs of anxiety without apparent adverse side effects. Current treatments for anxiety disorders, panic disorder and associated conditions can have unwanted side effects including cognitive impairments.

“Our findings indicate a new and important target for the treatment of anxiety-related disorders and show that our photopharmacology-based approach holds promise more broadly as a way to precisely reverse-engineer how therapeutics work in the brain,” said study senior author Dr. Joshua Levitz, an associate professor of biochemistry at Weill Cornell Medicine.

Researchers at the Ernst Strüngmann Institute in Frankfurt am Main, Germany, led by Wolf Singer, have made a new discovery in understanding fundamental brain processes. For the first time, the team has provided compelling evidence that the brain’s characteristic rhythmic patterns play a crucial role in information processing. While these oscillatory dynamics have long been observed in the brain, their purpose has remained mostly elusive until now.

The study has the potential to transform our understanding of brain activity. Using , the researchers show that recurrent networks with oscillating nodes demonstrate better performance compared to non-oscillating networks and replicate many experimentally observed phenomena.

These findings indicate that oscillatory dynamics are not just an epiphenomenon but are essential for efficient computation in the brain. The work is published in the journal Proceedings of the National Academy of Sciences.

Researchers at the Sainsbury Wellcome Center (SWC) at UCL have unveiled the precise brain mechanisms that enable animals to overcome instinctive fears. Published in Science, the study in mice could have implications for developing therapeutics for fear-related disorders such as phobias, anxiety and post-traumatic stress disorder (PTSD).

The research team, led by Dr. Sara Mederos and Professor Sonja Hofer, mapped out how the brain learns to suppress responses to perceived threats that prove harmless over time.

“Humans are born with instinctive reactions, such as responses to loud noises or fast-approaching objects,” explains Dr. Mederos, Research Fellow in the Hofer Lab at SWC.

Basically chat gpt can allow people that need to do more jobs can actually do several if not all jobs needed. Also essentially increase ones mental capacity and mental health due to that chat gpt can be almost like an external brain interface that can do nearly any job so that people can make even more money. Also people think this would replace people I believe it augments people like Ironman from marvel comics allowing to do tasks in seconds.#Ironman


A new breed of overemployed workers has emerged, turning to artificial intelligence (AI)-powered language models like ChatGPT to handle a significant portion of their job responsibilities.

“ChatGPT does like 80% of my job,” stated one worker, while another, currently holding down four robot-performed jobs, says, “Five would be overkill.”

As the popularity of AI-powered tools like ChatGPT continues to soar, concerns are growing about the impact on the global job market. With the potential for jobs to be automated and replaced by chatbots, experts are warning of a possible future where human workers become obsolete.

Link :


Clinical trials are underway for a drug that could potentially prevent Alzheimer’s long before it kicks in. Researchers from Washington University School of Medicine are studying the effects of an experimental antibody called remternetug.

The drug was developed by pharmaceutical giant Eli Lilly. It is designed for genetically predisposed people to develop Alzheimer’s and its study focuses on young people aged 18 and up.

Remternetug targets amyloid beta, a protein that forms plaque in the brain. The presence of plaque is one of the key hallmarks of Alzheimer’s disease. Other recently approved drugs, like donanemab, also target amyloid plaque, since that seems to be what you attack if you want to chip away at Alzheimer’s.

We all know that time seems to pass at different speeds in different situations. For example, time appears to go slowly when we travel to unfamiliar places. A week in a foreign country seems much longer than week at home.

Time also seems to pass slowly when we are bored, or in pain. It seems to speed up when we’re in a state of absorption, such as when we play music or chess, or paint or dance. More generally, most people report time seems to speed up as they get older.

However, these variations in time perception are quite mild. Our experience of time can change in a much more radical way. In my new book, I describe what I call “time expansion experiences” – in which seconds can stretch out into minutes.