Menu

Blog

Archive for the ‘neuroscience’ category: Page 52

Jun 25, 2024

Drug used for cancer treatment could help slow or stop Parkinson’s, study says

Posted by in categories: biotech/medical, neuroscience

BOSTON — There currently is no cure for Parkinson’s disease, but scientists may have discovered a potential path to slow or stop the disease. Parkinson’s disease is a brain disorder that can cause movement problems such as tremors, poor balance, and walking difficulties, and it can also impair cognitive function. There is no cure and treatments aim to simply reduce symptoms. But a new study in mice by researchers at Johns Hopkins offers new hope. They found that the interaction of two proteins is key to the buildup of protein clumps in the brain that damage healthy brain cells in Parkinson’s. They also suggest that disrupting these proteins with a drug already approved by the FDA to treat cancer could potentially slow or stop the brain damage associated with Parkinson’s. The next step would be to conduct clinical trials in humans, but that will take time.

Jun 25, 2024

Low power nanoscale S-FED based single ended sense amplifier applied in integrate and fire neuron circuit

Posted by in categories: nanotechnology, neuroscience

Motaman, S., Ghafouri, T. & Manavizadeh, N. Sci Rep 14, 10,691 (2024). https://doi.org/10.1038/s41598-024-61224-x.

Download citation.

Jun 25, 2024

A high-density 1,024-channel probe for brain-wide recordings in non-human primates

Posted by in category: neuroscience

A probe incorporating 1,024 simultaneously recorded channels with shank length up to 90 mm exhibits high chronic recording stability and enables brain-wide large-scale neural population recordings with single-cell resolution in non-human primates.

Jun 25, 2024

Artificial mini-brains without animal components offer neuroscience opportunities

Posted by in categories: biotech/medical, neuroscience

Researchers at University of Michigan have developed a method to produce artificially grown miniature brains—called human brain organoids—free of animal cells that could greatly improve the way neurodegenerative conditions are studied and, eventually, treated.

Over the last decade of researching , scientists have explored the use of as an alternative to mouse models. These self-assembled, 3D tissues derived from embryonic or more closely model the complex structure compared to conventional two-dimensional cultures.

Until now, the engineered network of proteins and molecules that give structure to the cells in , known as extracellular matrices, often used a substance derived from mouse sarcomas called Matrigel. That method suffers significant disadvantages, with a relatively undefined composition and batch-to-batch variability.

Jun 25, 2024

Pilot study provides ‘blueprint’ for evaluating diet’s effect on brain health

Posted by in categories: biotech/medical, food, life extension, neuroscience

Researchers from Johns Hopkins Medicine and the National Institutes of Health’s National Institute on Aging say their study of 40 older adults with obesity and insulin resistance who were randomly assigned to either an intermittent fasting diet or a standard healthy diet approved by the U.S. Department of Agriculture (USDA) offers important clues about the potential benefits of both eating plans on brain health.

Jun 25, 2024

The largest repository of transcription factor binding data in human tissues compiled to date

Posted by in categories: biotech/medical, genetics, neuroscience

Transcription factors (TFs) are proteins that bind to specific DNA sequences, regulating the transcription of genetic information from DNA to messenger RNA (mRNA). These proteins play a pivotal role in the regulation of gene expression, which in turn impacts a wide range of biological processes and brain functions.

Jun 25, 2024

Music study reveals brain’s predictive power

Posted by in categories: media & arts, neuroscience

Ever heard just a snippet of a song and instantly known what comes next? Or picked up the rhythm of a chorus after just a few notes? New research from the Center for Music in the Brain at Aarhus University and the Centre for Eudaimonia and Human Flourishing at the University of Oxford has uncovered what happens in our brain when we recognize and predict musical sequences.

Jun 25, 2024

SNP rs13194504 AA genotype links to severity of tardive dyskinesia

Posted by in categories: biotech/medical, neuroscience

For patients with schizophrenia, the single-nucleotide polymorphism (SNP) rs13194504 AA genotype is associated with reduced severity of tardive dyskinesia (TD), but is not associated with occurrence, according to a study recently published in Human Psychopharmacology: Clinical & Experimental.

Jun 25, 2024

Neuromelanin-sensitive MRI linked to psychosis severity in schizophrenia

Posted by in categories: biotech/medical, neuroscience

Neuromelanin-sensitive magnetic resonance imaging (NM-MRI) contrast is associated with psychosis severity in antipsychotic-free patients with schizophrenia, according to a study published online Nov. 8 in JAMA Psychiatry.

Kenneth Wengler, Ph.D., from Columbia University in New York City, and colleagues conducted a cross-sectional study involving 42 antipsychotic-free patients with , 53 antipsychotic-free individuals at clinical high risk for psychosis (CHR), and 52 matched healthy controls to replicate previous findings relating NM-MRI, a proxy measure of dopamine function, to psychosis severity. Data were also included for an external validation sample of 16 antipsychotic-naive patients with schizophrenia.

The researchers found that higher Positive and Negative Syndrome Scale positive total scores correlated with higher mean NM-MRI contrast in the psychosis regions of interest (ROI) in the schizophrenia sample.

Jun 25, 2024

Brain connectivity found to be disrupted in schizophrenia

Posted by in categories: biotech/medical, health, mathematics, neuroscience

Schizophrenia, a neurodevelopmental disorder that features psychosis among its symptoms, is thought to arise from disorganization in brain connectivity and functional integration. Now, a recent study in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, finds differences in functional brain connectivity in people with and without psychosis and schizophrenia that could help researchers understand the neural underpinnings of this disease.

The brain’s cortex is organized in a hierarchical fashion, anchored by the sensorimotor cortex at one end and by multimodal association areas at the other, with the task of integrating incoming sensory information with internal and external sensory signals. The loss of executive control in schizophrenia may stem from disruption of this hierarchical signaling.

Alexander Holmes, a Ph.D. candidate at Monash University who led the study, said, “We used brain imaging and novel mathematical techniques to investigate the hierarchical organization of the brains of individuals with early psychosis and established schizophrenia. This organization is important for brain health, as it regulates how we can effectively respond to and process stimuli from the external world.”

Page 52 of 990First4950515253545556Last