Toggle light / dark theme

Many cells in our body have a single primary cilium, a micrometer-long, hair-like organelle protruding from the that transmits cellular signals. Cilia are important for regulating cellular processes, but because of their small size and number, it has been difficult for scientists to explore cilia in brain cells with traditional techniques, leaving their organization and function unclear.

In a series of papers appearing in Current Biology, the Journal of Cell Biology, and the Proceedings of the National Academy of Sciences, researchers at HHMI’s Janelia Research Campus, the Allen Institute, the University of Texas Southwestern Medical Center, and Harvard Medical School used super high-resolution 3D electron microscopy images of mouse brain tissue generated for creating connectomes to get the best look yet at .

Researchers have developed a reliable and reproducible way to fabricate tapered polymer optical fibers that can be used to deliver light to the brain. These fibers could be used in animal studies to help scientists better understand treatments and interventions for various neurological conditions.

The tapered fibers are optimized for neuroscience research techniques, such as optogenetic experiments and fiber photometry, which rely on the interaction between genetically modified neurons and delivered to and/or collected from the .

“Unlike standard optical fibers, which are cylindrical, the tapered fibers we developed have a conical shape, which allows them to penetrate the tissue with more ease and to deliver light to larger volumes of the brain,” said research team member Marcello Meneghetti from the Neural Devices and Gas Photonics group at the Technical University of Denmark.

Researchers discovered that electrical synapses filter sensory signals in animals, enabling context-specific decision-making—a finding with broad implications for neuroscience.

Scientists from Yale University

Established in 1701, Yale University is a private Ivy League research university in New Haven, Connecticut. It is the third-oldest institution of higher education in the United States and is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. It is named after British East India Company governor Elihu Yale.

The coordinated activity of brain cells, like birds flying in formation, helps us behave intelligently in new situations, according to a study led by Cedars-Sinai investigators. The work, published in the peer-reviewed journal Nature, is the first to illuminate the neurological processes known as abstraction and inference in the human brain.

“Abstraction allows us to ignore irrelevant details and focus on the information we need in order to act, and inference is the use of knowledge to make educated guesses about the world around us,” said Ueli Rutishauser, PhD, professor and Board of Governors Chair in Neurosciences at Cedars-Sinai and co-corresponding author of the study. “Both are important parts of cognition and learning.”

Humans often use these two cognitive processes together to rapidly learn about and act appropriately in new environments. One example of this is an American driver who rents a car in London for the first time.

Gamma oscillations in the brain reveal pain intensity, driven by PV interneurons in the somatosensory cortex. New research highlights their role as biomarkers and therapeutic targets for pain management.


Summary: Parvalbumin (PV) interneurons in the primary somatosensory cortex (S1) have been identified as key players in encoding pain intensity and driving gamma oscillations, according to a study. Cross-species experiments confirmed that gamma oscillations in S1 selectively reflect pain levels in humans and are linked to PV interneuron activity in rodents.

Optogenetic manipulation of these interneurons demonstrated their ability to modulate pain-related behaviors, solidifying their role in pain processing. The findings establish a direct connection between PV interneurons and gamma oscillations, highlighting their potential as a biomarker and target for pain therapies.

Researchers have discovered that neurotransmitters like dopamine.

Dopamine is a crucial neurotransmitter involved in many important functions in the brain, particularly those related to pleasure, reward, motivation, and motor control. It plays a central role in the brain’s reward system, where it helps reinforce rewarding behaviors by increasing pleasure and satisfaction, making it critical for habit formation and addictive behaviors. Dopamine is also vital for regulating movement, and deficiencies in dopamine production are linked to neurological disorders such as Parkinson’s disease. Additionally, dopamine influences various other functions, including mood regulation, learning, and attention, making it a key focus in studies of both mental health and neurodegenerative diseases.

New research uncovers how neuropilin2 gene mutations disrupt brain balance, linking inhibitory neuron migration to autism and epilepsy. Study offers insights for targeted therapies.


Source: UCR

The gene neuropilin2 encodes a receptor involved in cell-cell interactions in the brain and plays a key role in regulating the development of neural circuits.

Neuropilin2 controls migration of inhibitory neurons as well as the formation and maintenance of synaptic connections in excitatory neurons — two crucial components of brain activity.

Bill Gates worries that kids today may miss out on a key advantage he had. The billionaire credits his successful career, in part, to having the freedom, and free time, in his youth to explore the world around him, to read and to think deeply without more modern distractions like smartphones and social media.

Today’s kids spend less time outside, exploring and playing with friends, than previous generations, thanks to the ubiquity of smartphones and social media.

That switch from a “play-based childhood” to one that’s “phone-based” has triggered a cultural shift that’s behind rising rates of mental health issues in younger generations, along with other negative effects on kids’ ability to learn and socialize, according to social psychologist Jonathan Haidt’s 2024 best-selling book “The Anxious Generation.”

Concussions and repeated head injuries are no longer seen as mere occupational hazards of contact sports; they are now recognized as serious health concerns.

Recent research from Tufts University and the University of Oxford reveals a potential link between head trauma and the activation of dormant viruses in the brain, which may lead to long-term neurodegenerative diseases such as Alzheimer’s.

The findings, published in the journal Science Signaling, suggest that early preventive treatments using antiviral drugs could help mitigate these risks.

The air we breathe can have profound effects on our physical and mental health. Is there any way of protecting yourself from this pervasive problem?

All but 1% of the world’s population is exposed to unhealthy air that exceeds World Health Organization (WHO) limits for pollutants. In parts of the world, air quality has rapidly improved through policies that aim to limit pollution. But elsewhere, gains in air quality are at risk of being lost.

More than 25% of the US population is exposed to air considered “unhealthy” by the Environmental Protection Agency (EPA), according to a report by the climate non-profit First Street Foundation. By 2050, the number of people exposed to “unhealthy” days is set to increase by more than half. The worst days of air pollution (“hazardous” or maroon, under the EPA’s system) are expected to rise by 27%.