Toggle light / dark theme

Study: A Simple Brain Stimulation Method Could Speed Up Decision-Making

A study from MLU found that brain stimulation using tDCS can slightly influence decision speed and flexibility, though its effects are subtle and context-dependent. A new study from Martin Luther University Halle-Wittenberg (MLU), published in the Journal of Cognitive Neuroscience, has found that

Gut-brain link may affect behavior in children with autism

A new USC study suggests that gut imbalances in children with autism may create an imbalance of metabolites in the digestive system—ultimately disrupting neurotransmitter production and influencing behavioral symptoms.

The research, published in Nature Communications, adds to a growing body of science implicating the “gut-brain” axis in . The discovery raises the possibility of new treatment avenues. It’s an example of how research at USC, and other universities, drives innovation and leads to discoveries that improve lives.

“We demonstrated that gut metabolites impact the brain, and the brain, in turn, affects behavior. Essentially, the brain acts as the intermediary between gut health and autism-related behaviors,” said first author Lisa Aziz-Zadeh, a professor at the Brain and Creativity Institute at the USC Dornsife College of Letters, Arts and Sciences.

How the brain learns: Study reveals an unexpected twist

Our brain’s ability to absorb fresh information — whether that means mastering a new task at work, memorizing the refrain of a song, or navigating unfamiliar streets — depends on a remarkable talent for neural self‑reinvention.

Every time we practice something novel, millions of tiny contacts between nerve cells subtly adjust their strength and neurons use multiple mechanisms to store knowledge.

Some connections, called synapses, amplify their signals to stamp in crucial details; others turn down the volume to clear away noise. Collectively these shifts are known as synaptic plasticity and for decades neuroscientists have cataloged dozens of molecular pathways that can nudge a synapse up or down.

Scientists reveal cilia’s secrets using connectome data

Many cells in our body have a single primary cilium, a micrometer-long, hair-like organelle protruding from the cell surface that transmits cellular signals. Cilia are important for regulating cellular processes, but because of their small size and number, it has been difficult for scientists to explore cilia in brain cells with traditional techniques, leaving their organization and function unclear.

In a new series of work, researchers at HHMI’s Janelia Research Campus, the Allen Institute, the University of Texas Southwestern Medical Center, and Harvard Medical School used super high-resolution 3D electron microscopy images of mouse brain tissue generated for creating connectomes to get the best look yet at primary cilia.

How does your brain create new memories? Neuroscientists discover ‘rules’ for how neurons encode new information

Every day, people are constantly learning and forming new memories. When you pick up a new hobby, try a recipe a friend recommended or read the latest world news, your brain stores many of these memories for years or decades.

But how does your brain achieve this incredible feat?

In our newly published research in the journal Science, we have identified some of the “rules” the brain uses to learn.