Toggle light / dark theme

Like a computer system with built-in redundancies, a study has revealed that brains use three different sets of neurons to store a single memory. The finding could one day help soften painful memories in people who’ve suffered trauma.

By imaging the brains of mice, researchers at the University of Basel’s Biozentrum, were able to watch what happens when a new memory is formed. What they found was that the rodent brains called three different sets of neurons into action to record the memory. The first are known as early-born neurons and are the earliest to develop as a fetus is growing. At the other end of the spectrum are the late-born neurons, which show up late in embryonic development. Between these are neurons that form somewhere right in the middle of growth in the womb.

The imaging study revealed that when the new memory is stored in the early-born neurons, it is initially hard to retrieve, but it becomes stronger as time goes on.

ABOVE: Researchers recapitulate electrical gradients in vitro to help guide stem cell differentiation for neural regeneration. ©istock, Cappan.

The dance of development is electric. Bioelectrical gradients choreograph embryonic growth, signaling to stem cells what cell types they should become, where they should travel, who their neighbors should be, and what structures they should form.1 The intensity and location of these signals serve as an electrical scaffold to map out anatomical features and guide development. Bioelectricity also shapes tissue regeneration.2 Tapping into these mechanisms is of special interest to researchers who grapple with the challenge of regenerating injured nerves.3

One such curious team from Stanford University and the University of Arizona recently reported a new approach using electrically conductive hydrogels to induce differentiation of human mesenchymal stem cells into neurons and oligodendrocytes in vitro.4 Their findings, published in the Journal of Materials Chemistry B, provide important proof of principle for future studies of biocompatible materials to electrically augment transplanted and endogenous cells after injury.

(back to outline)

Robert J. Sternberg has devoted much of his career to the study of various conceptions of human intelligence. Starting with his Triarchic Theory of Human Intelligence (Sternberg, 1985), he has expanded on his view of human ability and success. Successful intelligence is defined as that set of mental abilities used to achieve one’s goals in life, given a socio-cultural context, through adaptation to, selection of, and shaping of environments. Successful intelligence involves three aspects that are interrelated but largely distinct: analytical, creative, and practical thinking (Sternberg, 1998). Practical Intelligence is the ability to size up a situation well, to be able to determine how to achieve goals, to display awareness to the world around you, and to display interest in the world at large (Sternberg, 1990; Sternberg et al., 2000; Wagner, 2000). Prof. Sternberg is working on several projects that examine the interrelation of his various conceptions of ability in applied settings.

The problem of intelligence — its nature, how it is produced by the brain and how it could be replicated in machines — is a deep and fundamental problem that cuts across multiple scientific disciplines. Philosophers have studied intelligence for centuries, but it is only in the last several decades that developments in science and engineering have made questions such as these approachable: How does the mind process sensory information to produce intelligent behavior, and how can we design intelligent computer algorithms that behave similarly? What is the structure and form of human knowledge — how is it stored, represented, and organized? How do human minds arise through processes of evolution, development, and learning? How are the domains of language, perception, social cognition, planning, and motor control combined and integrated? Are there common principles of learning, prediction, decision, or planning that span across these domains?

This course explores these questions with an approach that integrates cognitive science, which studies the mind; neuroscience, which studies the brain; and computer science and artificial intelligence, which study the computations needed to develop intelligent machines. Faculty and postdoctoral associates affiliated with the Center for Brains, Minds and Machines discuss current research on these questions.

“Not being able to communicate is so frustrating and demoralizing. It is like you are trapped,” Harrell said. “Something like this technology will help people back into life and society.”

For the researchers involved, seeing the impact of their work on Harrell’s life has been deeply rewarding. “It has been immensely rewarding to see Casey regain his ability to speak with his family and friends through this technology,” said the study’s lead author, Nicholas Card, a postdoctoral scholar in the UC Davis Department of Neurological Surgery.

Leigh Hochberg, a neurologist and neuroscientist involved in the BrainGate trial, praised Harrell and other participants for their contributions to this groundbreaking research. “Casey and our other BrainGate participants are truly extraordinary. They deserve tremendous credit for joining these early clinical trials,” Hochberg said. “They do this not because they’re hoping to gain any personal benefit, but to help us develop a system that will restore communication and mobility for other people with paralysis.”

The dosage of tyrosine supplements given in studies greatly varies, ranging from fixed amounts of 2–20 g to 25–150 mg/kg of body weight.

Speak with a healthcare provider to discuss the most appropriate dose for your health concerns.

Many foods contain tyrosine, making it relatively easy to meet the daily requirements. Meat and meat products are among the best dietary sources. For example, each 6-ounce (oz) cooked serving of chicken and steak provides 1,446 mg and 1,640 mg of tyrosine, respectively.

Fermented foods have been used for several years all over the world, due to their unique nutritional characteristics and because fermentation promotes conservation and food security. Moreover, fermented foods and beverages have a strong impact on human gut microbiota. Papaya is the fruit of the Carica papaya plant, traditionally used as a medicinal fruit, but there are also references to the use of the fermented form of this fruit. The main purpose of this review is to provide an improved understanding of fermented papaya nutritional and health applications. A literature search was conducted in the PubMed and Google Scholar databases. Both in vitro and in vivo studies were included. According to the retrieved studies, fermented papaya has proven to be an excellent antioxidant and an excellent nutraceutical adjuvant in combined therapies against several diseases, such as Alzheimer’s disease, allergic reactions, anticancer activity, and anemias. Therefore, it is concluded that fermented papaya has many benefits for human health and can be used as prevention or aid in the treatment of various diseases.

Keywords: fermented food, fermented papaya, health benefits, oxidative stress.

Karl Friston is a leading neuroscientist and pioneer of the free energy principle, celebrated for his influential work in computational neuroscience and his profound impact on understanding brain function and cognition. Karl is a Professor of Neuroscience at University College London and a Fellow of the Royal Society, with numerous awards recognizing his contributions to theoretical neurobiology.

Listen on Spotify: https://open.spotify.com/show/4gL14b9

Become a YouTube Member Here:
/ @theoriesofeverything.

Patreon: / curtjaimungal (early access to ad-free audio episodes!)