Menu

Blog

Archive for the ‘particle physics’ category: Page 36

Jun 12, 2024

A Close Look at the Dynamics of an Ion–Neutral Reaction

Posted by in categories: chemistry, nuclear energy, particle physics

A detailed study of a reaction between a molecular ion and a neutral atom has implications for both atmospheric and interstellar chemistry.

Reactions between ions and neutral atoms or molecules occur in various settings, from planetary atmospheres to plasmas. They are also the driving force behind rich reaction chains at play in the interstellar medium (ISM)—the giant clouds of gas and dust occupying the space between stars. The ISM is cold, highly dilute, and abundant with ionizing radiation [1]. These conditions are usually unfavorable for chemistry. Yet, more than 300 molecular species have been detected in the ISM to date, of which about 80% contain carbon [2]. Now Florian Grussie at the Max Planck Institute for Nuclear Physics (MPIK) in Germany and collaborators report an experimental and theoretical study of an ion–neutral reaction: that between a neutral carbon atom and a molecular ion (HD+), made of a hydrogen and a deuterium (heavy hydrogen) atom [3, 4]. The study’s findings could improve our understanding of the chemistry of the ISM.

Ion–neutral reactions are fundamentally different from those involving only neutral species. Unlike typical neutral–neutral reactions, ion–neutral reactions often do not need to overcome an activation energy barrier and proceed efficiently even if the temperature approaches absolute zero. The reason for this difference is that, in ion–neutral reactions, the ion strongly polarizes the neutral atom or molecule, causing attractive long-range interactions that bring the reactants together.

Jun 11, 2024

A chain of copper and carbon atoms may be the thinnest metallic wire

Posted by in categories: computing, information science, nanotechnology, particle physics

While carbon nanotubes are the materials that have received most of the attention so far, they have proved very difficult to manufacture and control, so scientists are eager to find other compounds that could be used to create nanowires and nanotubes with equally interesting properties, but easier to handle.

So, Chiara Cignarella, Davide Campi and Nicola Marzari thought to use to parse known three-dimensional crystals, looking for those that—based on their structural and —look like they could be easily “exfoliated,” essentially peeling away from them a stable 1-D structure. The same method has been successfully used in the past to study 2D materials, but this is the first application to their 1-D counterparts.

The researchers started from a collection of over 780,000 crystals, taken from various databases found in the literature and held together by van der Waals forces, the sort of weak interactions that happen when atoms are close enough for their electrons to overlap. Then they applied an algorithm that considered the spatial organization of their atoms looking for the ones that incorporated wire-like structures, and calculated how much energy would be necessary to separate that 1-D structure from the rest of the crystal.

Jun 10, 2024

ATLAS chases long-lived particles with the Higgs boson

Posted by in categories: cosmology, information science, particle physics, robotics/AI

The Higgs boson has an extremely short lifespan, living for about 10–22 seconds before quickly decaying into other particles. For comparison, in that brief time, light can only travel about the width of a small atomic nucleus. Scientists study the Higgs boson by detecting its decay products in particle collisions at the Large Hadron Collider. But what if the Higgs boson could also decay into unexpected new particles that are long-lived? What if these particles can travel a few centimeters through the detector before they decay? These long-lived particles (LLPs) could shed light on some of the universe’s biggest mysteries, such as the reason matter prevailed over antimatter in the early universe and the nature of dark matter. Searching for LLPs is extremely challenging because they rarely interact with matter, making them difficult to observe in a particle detector. However, their unusual signatures provide exciting prospects for discovery. Unlike particles that leave a continuous track, LLPs result in noticeable displacements between their production and decay points within the detector. Identifying such a signature requires dedicated algorithms. In a new study submitted to Physical Review Letters, ATLAS scientists used a new algorithm to search for LLPs produced in the decay of Higgs bosons. Boosting sensitivity with a new algorithm Figure 1: A comparison of the radial distributions of reconstructed displaced vertices in a simulated long-lived particle (LLP) sample using the legacy and new (updated) track reconstruction configurations. The circular markers represent reconstructed vertices that are matched to LLP decay vertices and the dashed lines represent reconstructed vertices from background decay vertices (non-LLP). (Image: ATLAS Collaboration/CERN) Despite being critical to the LLP searches, dedicated reconstruction algorithms were previously so resource intensive that they could only be applied to less than 10% of all recorded ATLAS data. Recently, however, ATLAS scientists implemented a new “Large-Radius Tracking” algorithm (LRT), which significantly speeds up the reconstruction of charged particle trajectories in the ATLAS Inner Detector that do not point back to the primary proton-proton collision point, while drastically reducing backgrounds and random combinations of detector signals. The LRT algorithm is executed after the primary tracking iteration using exclusively the detector hits (energy deposits from charged particles recorded in individual detector elements) not already assigned to primary tracks. As a result, ATLAS saw an enormous increase in the efficiency of identifying LLP decays (see Figure 1). The new algorithm also improved CPU processing time more than tenfold compared to the legacy implementation, and the disk space usage per event was reduced by more than a factor of 50. These improvements enabled physicists to fully integrate the LRT algorithm into the standard ATLAS event reconstruction chain. Now, every recorded collision event can be scrutinized for the presence of new LLPs, greatly enhancing the discovery potential of such signatures. Physicists are searching for Higgs bosons decaying into new long-lived particles, which may leave a ‘displaced’ signature in the ATLAS detector. Exploring the dark with the Higgs boson Figure 2: Observed 95% confidence-limit on the decay of the Higgs boson to a pair of long-lived s particles that decay back to Standard-Model particles shown as a function of the mean proper decay length ( of the long-lived particle. The observed limits for the Higgs Portal model from the previous ATLAS search are shown with the dotted lines. (Image: ATLAS Collaboration/CERN) In their new result, ATLAS scientists employed the LRT algorithm to search for LLPs that decay hadronically, leaving a distinct signature of one or more hadronic “jets” of particles originating at a significantly displaced position from the proton–proton collision point (a displaced vertex). Physicists also focused on the Higgs “portal” model, in which the Higgs boson mediates interactions with dark-matter particles through its coupling to a neutral boson s, resulting in exotic decays of the Higgs boson to a pair of long-lived s particles that decay into Standard-Model particles. The ATLAS team studied collision events with unique characteristics consistent with the production of the Higgs boson. The background processes that mimic the LLP signature are complex and challenging to model. To achieve good discrimination between signal and background processes, ATLAS physicists used a machine learning algorithm trained to isolate events with jets arising from LLP decays. Complementary to this, a dedicated displaced vertex reconstruction algorithm was used to pinpoint the origin of hadronic jets originating from the decay of LLPs. This new search did not uncover any events featuring Higgs-boson decays to LLPs. It improves bounds on Higgs-boson decays to LLPs by a factor of 10 to 40 times compared to the previous search using the exact same dataset (see Figure 2)! For the first time at the LHC, bounds on exotic decays of the Higgs boson for low LLP masses (less than 16 GeV) have surpassed results for direct searches of exotic Higgs-boson decays to undetected states. About the event display: A 13 TeV collision event recorded by the ATLAS experiment containing two displaced decay vertices (blue circles) significantly displaced from the beam line showing “prompt” non displaced decay vertices (pink circles). The event characteristics are compatible with what would be expected if a Higgs boson is produced in association with a Z boson (decaying to two electrons indicated by green towers), and decayed into two LLPs (decaying into two b-quarks each). Tracks shown in yellow and jets are indicated by cones. The green and yellow blocks correspond to energy deposition in the electromagnetic and hadronic calorimeters, respectively. (Image: ATLAS Collaboration/CERN) Learn more Search for light long-lived particles in proton-proton collisions at 13 TeV using displaced vertices in the ATLAS inner detector (Submitted to PRL, arXiv:2403.15332, see figures) Performance of the reconstruction of large impact parameter tracks in the inner detector of ATLAS (Eur. Phys. J. C 83 (2023) 1,081, arXiv:2304.12867, see figures) Search for exotic decays of the Higgs boson into long-lived particles in proton-proton collisions at 13 TeV using displaced vertices in the ATLAS inner detector (JHEP 11 (2021) 229, arXiv:2107.06092, see figures)

Jun 10, 2024

‘Quantum optical antennas’ provide more powerful measurements on the atomic level

Posted by in categories: particle physics, quantum physics

Similar to how a radio antenna plucks a broadcast from the air and concentrates the energy into a song, individual atoms can collect and concentrate the energy of light into a strong, localized signal that researchers can use to study the fundamental building blocks of matter.

Jun 9, 2024

Scientists find 16 “ultra-black” fish species that absorb 99.9% of light

Posted by in categories: materials, particle physics

A crested bigscaleCredit: Karen Osborn/Smithsonian

“But what isn’t absorbed side-scatters into the layer, and it’s absorbed by the neighboring pigments that are all packed right up close to it,” Osborn told Wired. “And so what they’ve done is create this super-efficient, very-little-material system where they can basically build a light trap with just the pigment particles and nothing else.”

The result? Strange and terrifying deep-sea species, like the crested bigscale, fangtooth, and Pacific blackdragon, all of which appear in the deep sea as barely more than faint silhouettes.

Jun 9, 2024

Spin Secrets Unlocked: New Milestone in Spintronics Could Revolutionize Electronics

Posted by in categories: materials, particle physics

Recent advancements in spintronics have enabled better prediction and control of spin currents by studying the magnetic properties and temperature effects on materials.

Spintronics is attracting significant interest as a promising alternative to conventional electronics, offering potential benefits such as lower power consumption, faster operation, non-volatility, and the possibility of introducing new functionalities.

Spintronics exploits the intrinsic spin of electrons, and fundamental to the field is controlling the flows of the spin degree of freedom, i.e., spin currents. Scientists are constantly looking at ways to create, remove, and control them for future applications.

Jun 9, 2024

Unveiling novel energy phenomena from light exposure on layered materials

Posted by in categories: nanotechnology, particle physics

Research groups from the University of Tsukuba and the University of Rennes have discovered a novel phenomenon in which a nested structure of carbon nanotubes enveloped in boron nitride nanotubes facilitates a unique electron escape route when exposed to light. This finding introduces promising avenues for various applications, including the creation of high-speed optical devices, rapid control of electrons and other particles and efficient heat dissipation from devices.

Jun 7, 2024

Theory Predicts Collective States of Mobile Particles

Posted by in categories: biological, particle physics, robotics/AI

Collections of mobile, interacting objects—flocks of birds, colonies of bacterial, or teams of robots—can sometimes behave like solid materials, executing organized rotations or gliding coherently in one direction. But why such systems display one kind of collective organization rather than another has remained unclear. Now researchers have developed a theory that can predict the pattern most likely to emerge under specific conditions [1]. The theory, they hope, may be of use in designing living and artificial materials that can autonomously adapt to their environment.

An “active material” is any system made up of interacting objects able to move under their own power, such as animals, cells, or robots. In so-called active solids, a subset of active materials, strong cohesion between neighboring elements makes the collective act somewhat like a solid. Examples include clusters of certain cell types and networks of robots with rigid connections.

Active solids can display several kinds of collective, organized motion, says Claudio Hernández-López, a PhD student at the École Normale Supérieure and Sorbonne University in France. For example, researchers have observed both coherent rotations and coherent translations in collections of microbes from the phylum Placozoa. Existing theories, however, fail to explain pattern selection—why, if several patterns are possible, does one pattern of behavior emerge rather than another?

Jun 7, 2024

Colorful Primordial Black Holes

Posted by in categories: cosmology, particle physics, quantum physics

Primordial black holes (PBHs)—hypothetical objects formed by the gravitational collapse of dense regions in the early Universe—have been invoked as dark-matter candidates. But for PBHs to constitute all dark matter, they’d have to be extremely light, possibly weighing less than small asteroids. Now Elba Alonso-Monsalve and David Kaiser of the Massachusetts Institute of Technology show that these diminutive PBHs could possess an exotic property—a net color charge (such a charge characterizes quarks and gluons in quantum chromodynamics theory) [1]. Such color-charged PBHs might have left potentially observable signatures, says Kaiser.

Observations rule out that stellar-mass PBHs could fully explain dark matter, but PBHs weighing between 1017 and 1022 g remain viable candidates. Since a PBH’s mass should relate to its age, this mass range corresponds to PBH formation immediately after the big bang, when the Universe was still a hot plasma of unconfined quarks and gluons. Most PBHs would have formed by engulfing large numbers of quarks and gluons having a distribution of color charges. These PBHs would be color-charge neutral and sufficiently massive to live until today. However, the duo’s calculations show that a few PBHs could have formed from regions so tiny that the charges of the absorbed gluons would be correlated, giving these PBHs a net charge.

Color-charged black holes have long been considered to be mathematically possible, but the new study is the first to propose a realistic formation mechanism, says Kaiser. The small sizes imply that they would have since evaporated. Yet their presence in the early Universe might have disrupted the distribution of protons and neutrons when the big bang created the first nuclear isotopes, leaving subtle traces in the cosmic abundance of the elements.

Jun 7, 2024

Upgrading the LHCb sub-detectors for the high-luminosity LHC

Posted by in category: particle physics

On 5 July 2022, protons began colliding again in the LHCb detector after a three-and-a-half-year break known as Long Shutdown 2 (LS2), marking the start of the third run of the Large Hadron Collider (LHC).

During this period, the original LHCb at the LHC was largely dismantled and an almost completely new detector constructed. The 2020 update of the European Strategy for Particle Physics approved by the CERN Council strongly supported exploiting the full potential of the LHC for studying flavor physics.

A further upgrade of the LHCb detector, known as Upgrade II, is planned to allow LHCb to operate at a much higher instantaneous luminosity and cope with the demanding data-taking conditions of the High-Luminosity LHC (HL-LHC). The latest technological developments will be taken into account to design the new detectors.

Page 36 of 571First3334353637383940Last