Toggle light / dark theme

Antimony is widely used in the production of materials for electronics, as well as metal alloys resistant to corrosion and high temperatures.

“Antimony melt is interesting because near the melting point, the atoms in this melt can form bound structures in the form of compact clusters or extended chains and remain in a bound state for quite a long time. We found out that the basic unit of these structures are linked triplets of adjacent atoms, and the centers of mass of these linked atoms are located at the vertices of right triangles. It is from these triplets that larger structures are formed, the presence of which causes anomalous structural features detected in neutron and X-ray diffraction experiments,” explains Dr. Anatolii Mokshin, study supervisor and Chair of the Department of Computational Physics and Modeling of Physical Processes.

The computer modeling method based on quantum-chemical calculations made it possible to reproduce anomalies in the structure of molten with high accuracy.

In a groundbreaking study published in the journal Optica, this innovative instrument emerges from the collaborative genius of the National Quantum Science and Technology Institute (NQSTI), incorporating expertise from several esteemed institutions. The device serves as a window into a dual universe, allowing the simultaneous examination of phenomena governed by both classical laws and the bizarre rules of quantum mechanics.

At the heart of this discovery lies the technique of optical trapping, a method that harnesses the power of light to manipulate microscopic particles. Now, empowered by the insights of physicist Francesco Marin and his team, the dual laser setup dramatically enhances our understanding of how these nano-objects interact. As they oscillate in their laser confines, the spheres reveal a dance of behaviors—some that align with our everyday experiences, and others that defy our intuition.

Tiny plastic particles may accumulate at higher levels in the human brain than in the kidney and liver, with greater concentrations detected in postmortem samples from 2024 than in those from 2016, suggests a paper published in Nature Medicine. Although the potential implications for human health remain unclear, these findings may highlight a consequence of rising global concentrations of environmental plastics.

The amount of environmental nano-and microparticles, which range in size from as small as 1 nanometer (one billionth of a meter) up to 500 micrometers (one millionth of a meter) in diameter, has increased exponentially over the past 50 years. However, whether they are harmful or toxic to humans is unclear. Most previous studies used visual microscopic spectroscopy methods to identify particulates in , but this is often limited to particulates larger than 5 micrometers.

Researcher Matthew Campen and colleagues used novel methods to analyze the distribution of micro-and nanoparticles in samples of , kidney, and tissues from human bodies that underwent autopsy in 2016 and 2024. A total of 52 brain specimens (28 in 2016 and 24 in 2024) were analyzed.

The fundamental principles of thermodynamics have long been a cornerstone of our understanding of the physical world, with the second law of thermodynamics standing as a testament to the inexorable march towards disorder and entropy that governs all closed systems. However, the realm of quantum physics has traditionally appeared to defy this notion, with mathematical formulations suggesting that entropy remains constant in these systems.

Recent research has shed new light on this seeming paradox, revealing that the apparent contradiction between quantum mechanics and thermodynamics can be reconciled through a nuanced understanding of entropy itself. By adopting a definition of entropy that is compatible with the principles of quantum physics, specifically the concept of Shannon entropy, scientists have demonstrated that even isolated quantum systems will indeed evolve towards greater disorder over time, their entropy increasing as the uncertainty of measurement outcomes grows.

This breakthrough insight has far-reaching implications for our comprehension of the interplay between quantum theory and thermodynamics, and is poised to play a pivotal role in the development of novel quantum technologies that rely on the manipulation of complex many-particle systems.

An experiment in Sweden has demonstrated control over a novel kind of magnetism, giving scientists a new way to explore a phenomenon with huge potential to improve electronics – from memory storage to energy efficiency.

Using a device that accelerates electrons to blinding speeds, a team led by researchers from the University of Nottingham showered an ultra-thin wafer of manganese telluride with X-rays of different polarizations, to reveal changes on a nanometer scale reflecting magnetic activity unlike anything seen before.

For a rather mundane chunk of iron to transform into something a little more magnetic, its constituent particles need to be arranged so that their unpartnered electrons align according to a property known as spin.

Quantum networks require quantum nodes that are built using quantum dots.


However, a new study impressively solves these challenges. The study authors successfully used 13,000 nuclear spins in a gallium arsenide (GaAs) quantum dot system to create a scalable quantum register.

Quantum networks require quantum nodes that are built using quantum dots — tiny particles, much smaller than a human hair, which can trap and control electrons, and store quantum information.

Quantum dots are valued for their ability to emit single photons because single-photon sources are key requirements for secure quantum communication and quantum computing applications.

Everyone has their favourite example of a trick that reliably gets a certain job done, even if they don’t really understand why. Back in the day, it might have been slapping the top of your television set when the picture went fuzzy. Today, it might be turning your computer off and on again.

Quantum mechanics — the most successful and important theory in modern physics — is like that. It works wonderfully, explaining things from lasers and chemistry to the Higgs boson and the stability of matter. But physicists don’t know why. Or at least, if some of us think we know why, most others don’t agree.