The discovery of two entangled quarks at the large Hadron Collider is the highest-energy observation of entanglement ever made.
Category: particle physics – Page 50
Episode · The Joy of Why · Nothing escapes a black hole… or does it? In the 1970s, Stephen Hawking described a subtle process by which black holes can “evaporate,” with some particles evading gravitational oblivion. This phenomenon, now dubbed “Hawking radiation,” seems inherently at odds with general relativity, but it gets weirder still: If particles can escape, do they preserve some information about the matter that was obliterated? Leonard Susskind, a physicist at Stanford University, found himself at odds with Hawking when it came to answering this question. In this episode, co-host Janna Levin speaks with Susskind about the “black hole war” that ensued and the powerful scientific lessons that have radiated from one of the most famous paradoxes in physics.
At the International Conference on High-Energy Physics in Prague in July, the LHCb collaboration presented an updated measurement of the weak mixing angle using the data collected at the experiment between 2016 and 2018. The measurement benefits from the unique forward coverage of the LHCb detector.
The success of electroweak theory in describing a wide range of measurements at different experiments is one of the crowning achievements of the Standard Model ℠ of particle physics. It explains electroweak phenomena using a small number of free parameters, allowing precise measurements of different quantities to be compared to each other. This facilitates powerful indirect searches for beyond-the-SM physics. Discrepancies between measurements might imply that new physics influences one process but not another, and global analyses of high-precision electroweak measurements are sensitive to the presence of new particles at multi-TeV scales. In 2022 the entire field was excited by a measurement of the W-boson mass that is significantly larger than the value predicted within these global analyses by the CDF collaboration, heightening interest in electroweak measurements.
The weak mixing angle is at the centre of electroweak physics. It describes the mixing of the U and SU fields, determines couplings of the Z boson, and can also be directly related to the ratio of the W and Z boson masses. Excitingly, the two most precise measurements to date, from LEP and SLD, are in significant tension. This raises the prospect of non-SM particles potentially influencing one of these measurements, since the weak mixing angle, as a fundamental parameter of nature, should otherwise be the same no matter how it is measured. There is therefore a major programme measuring the weak mixing angle at hadron colliders, with important contributions from CDF, D 0, ATLAS, CMS and LHCb.
Have you ever wondered how the bizarre world of quantum mechanics intersects with high-energy particle physics?
Discover how quantum entanglement was observed in high-energy particles at CERN’s LHC, revolutionizing our understanding of particle physics.
Experiments reveal the factors that determine the friction between the single-atom-thick layers in van der Waals materials, which may have uses in lubrication technology.
Van der Waals (vdW) materials consist of stacked, single-atom-thick layers, and these layers can experience very low friction as they slide over one another, a property that might be exploited for lubrication. A research team has now distinguished several contributions to this low friction and has shown that effects at the edges of the sliding regions dominate [1]. Some of their experiments involved sliding a several-layer-thick flake across a surface made of a similar material containing a crack, which allowed the team to systematically control the edge length. The findings could guide efforts to engineer controllable frictional forces into such materials in micromechanical devices.
The very low friction, called superlubricity, exhibited by vdW materials has been previously shown to depend on the relative orientations of the layers. If one layer is rotated by some angle, called the twist angle, with respect to the layer below, the two layers form a “superlattice” in which the two atomic lattices fall periodically in and out of registry, like a pair of overlaid combs with slightly different spacings. This arrangement is called a Moiré pattern, and the repeating elements, or unit cells, of the superlattice are called Moiré tiles. Superlubricity arises because, in general, the contributions to the frictional force from the atoms within one Moiré tile cancel each other out: Some exert a push, while others exert a pull.
A Bose-Einstein condensate of cold atoms occupying a periodic lattice can flow like a superfluid. But if the atoms’ mutual repulsion is strengthened and the lattice potential deepened, the atoms can become immobilized in a state known as a Mott insulator. Now Hepeng Yao of the University of Geneva and his collaborators have examined the Mott transition of cold atoms trapped in a lattice that is quasiperiodic rather than periodic [1]. Given that quasiperiodicity and other kinds of disorder tend to trap particles, the researchers were surprised to discover that their quasiperiodic lattice sustained the superfluid state rather than weakening it.
Yao and his collaborators trapped potassium-39 atoms in a one-dimensional optical lattice formed by the standing waves of two lasers. If the ratio of the lasers’ wavelengths was a rational number, the lattice was periodic. Otherwise, the lattice was quasiperiodic. By adjusting various experimental parameters, they could control the depth of the confining potentials, the strength of the interatomic repulsion, and whether the lattice sites were fully occupied. To determine whether a given set of parameters yielded a static, insulating state or a mobile, superfluid one, they turned off the trap and observed how the atoms flew apart.
The team found that the Mott transitions for the periodic and quasiperiodic lattices were both characterized by a critical value of the interparticle repulsion, but the critical value in the quasiperiodic case was higher. Quantum Monte Carlo simulations pointed to the reason. The commensurability between the lattice period and the particle number is a key factor in pinning particles in a Mott insulator. However, the quasiperiodic lattice blurs this commensurate period, thereby destabilizing the Mott phase to the profit of the superfluid one.
Antiferromagnets are materials in which the magnetic moments of neighboring atoms are aligned in an alternating pattern, resulting in no net macroscopic magnetism. These materials have interesting properties that could be favorable for the development of spintronic and electronic devices.
After an unexpected measurement by the Collider Detector at Fermilab (CDF) experiment in 2022, physicists on the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC) announced today a new mass measurement of the W boson, one of nature’s force-carrying particles.
Researchers from the School of Physics & Astronomy have been involved in an important new measurement of the top quark made using data provided by the Large Hadron Collider (LHC).
One of the most surprising predictions of physics is entanglement, a phenomenon where objects can be some distance apart but still linked together. The best-known examples of entanglement involve tiny chunks of light (photons), and low energies.