The avid reader of Lifeboat may have noticed that the debate on LHC safety assurances has recently swerved here towards discussion on astronomical phenomenology — mainly the continued existence of white dwarfs and neutron stars.
The detailed G&M safety report naturally considers both of these, and considers hypothetical stable MBH capture rates based on a weak CR background flux. It actually overlooks better examples of white dwarfs which are part of a binary pair such as Sirius B, the little companion to one of our closest and brightest stars, Sirius A.
One could argue that white dwarfs are not greatly understood — but the relevant factors to the safety debate are quite understood — density, mass, escape velocity, and approximate age of such observed phenomenon. Only magnetic field effects are up for debate.
If Sirius B captured even one such MBH due to CR bombardment from its companion star in the first say 20 million years of its existence — and it would be difficult to argue that it would not — then that MBH would be accreting for the last 100 million years, through far denser material, and most likely at a much higher velocity, than any MBH captured in the Earth due to LHC collisions. Therefore, given the continued existence of Sirius B, accretion rates would therefore have to be incredibly slow and there would be no significant threat to Earth from what would be a much slower MBH accretion rate here.
Continue reading “A muse on why Telemach could actually be a Safety Assurance” »