Toggle light / dark theme

A security source has told Sky News that Russia flew €140m in cash to Tehran in exchange for dozens of deadly “suicide drones”.

Moscow also included Western weapons it had captured in Ukraine in the shipment.

There are now fears that Iran could reverse engineer the technology behind the weapons.

#ukraine #skynews #russia #iran #ukrainewar #shahed136

SUBSCRIBE to our YouTube channel for more videos: https://www.youtube.com/skynews.

Follow us on Twitter: https://twitter.com/skynews.

With the help of NASA and Japan, Uganda has officially become a spacefaring nation — and its newly-launched PearlAfricaSat-1 craft has some pretty nifty tech onboard.

As the Uganda-based Nile Post reports, the satellite launched out of NASA’s Mid-Atlantic Regional Spaceport facility in Virginia on the morning of November 7 will not only provide important agricultural and security monitoring features for the developing nation, but will also conduct experiments involving the 3D printing of human tissue.

Per the Ugandan news site, the tissues printed on PearlAfricaSat-1 will be used in research into the effects microgravity has on ovary function — and as Quartz notes in its write-up of the NASA and Japan-supported mission, the microgravity aspect of the experiments is key because “bioprinting” human organs is difficult to achieve with Earth’s gravity.

When Courtney “CJ” Johnson pulls up footage from her Ph.D. dissertation, it’s like she’s watching an attempted break-in on a home security camera.

The intruder cases its target without setting a foot inside, looking for a point of entry. But this intruder is not your typical burglar. It’s a virus.

Filmed over two and a half minutes by pinpointing its location 1,000 times a second, the footage shows a tiny virus particle, thousands of times smaller than a grain of sand, as it lurches and bobs among tightly packed .

In 1994, the computer scientist Peter Shor discovered that if quantum computers were ever invented, they would decimate much of the infrastructure used to protect information shared online. That frightening possibility has had researchers scrambling to produce new, “post-quantum” encryption schemes, to save as much information as they could from falling into the hands of quantum hackers.

Earlier this year, the National Institute of Standards and Technology revealed four finalists in its search for a post-quantum cryptography standard. Three of them use “lattice cryptography” — a scheme inspired by lattices, regular arrangements of dots in space.

Lattice cryptography and other post-quantum possibilities differ from current standards in crucial ways. But they all rely on mathematical asymmetry. The security of many current cryptography systems is based on multiplication and factoring: Any computer can quickly multiply two numbers, but it could take centuries to factor a cryptographically large number into its prime constituents. That asymmetry makes secrets easy to encode but hard to decode.

A series of demonstrations by Micius—a low-orbit satellite with quantum capabilities—lays the groundwork for a satellite-based quantum communication network.

Few things have captured the scientific imagination quite like the vastness of space and the promise of quantum technology. Micius—the Chinese Academy of Science’s quantum communications satellite launched in 2016—has connected these two inspiring domains, producing a string of exciting first demonstrations in quantum space communications. Reviewing the efforts leading up to the satellite launch and the major outcomes of the mission, Jian-Wei Pan and colleagues at the University of Science and Technology of China provide a perspective on what the future of quantum space communications may look like [1]. The success of this quantum-satellite mission proves the viability of several space-based quantum communications protocols, providing a solid foundation for future improvements that may lead to an Earth-spanning quantum communications network (Fig. 1).

Photons, the quanta of light, are wonderful carriers of quantum information because they are easy to manipulate and travel extremely fast. They can be created in a desired quantum state or as the output of some quantum sensor or quantum computer. Quantum entanglement between multiple photons—the nonclassical correlation between their quantum states—can be amazingly useful in quantum communications protocols such as quantum key distribution (QKD), a cryptography approach that can theoretically guarantee absolute information security. QKD schemes have been demonstrated on distances of a few hundreds of kilometers—sufficient to cover communications networks between cities. But increasing their range, eventually to the global scale, is a formidable challenge.

Terahertz light, radiation in the far-infrared part of the emission spectrum, is currently not fully exploited in technology, although it shows great potential for many applications in sensing, homeland security screening, and future (sixth generation) mobile networks.

Indeed, this radiation is harmless due to its small photon energy, but it can penetrate many materials (such as skin, packaging, etc.). In the last decade, a number of research groups have focused their attention on identifying techniques and materials to efficiently generate THz electromagnetic waves: among them is the wonder material graphene, which, however, does not provide the desired results. In particular, the generated terahertz output power is limited.

Better performance has now been achieved by topological insulators (TIs)—quantum materials that behave as insulators in the bulk while exhibiting conductive properties on the surface—according to a paper recently published in Light: Science & Applications.

face_with_colon_three circa 2016.


Two basic types of encryption schemes are used on the internet today. One, known as symmetric-key cryptography, follows the same pattern that people have been using to send secret messages for thousands of years. If Alice wants to send Bob a secret message, they start by getting together somewhere they can’t be overheard and agree on a secret key; later, when they are separated, they can use this key to send messages that Eve the eavesdropper can’t understand even if she overhears them. This is the sort of encryption used when you set up an online account with your neighborhood bank; you and your bank already know private information about each other, and use that information to set up a secret password to protect your messages.

The second scheme is called public-key cryptography, and it was invented only in the 1970s. As the name suggests, these are systems where Alice and Bob agree on their key, or part of it, by exchanging only public information. This is incredibly useful in modern electronic commerce: if you want to send your credit card number safely over the internet to Amazon, for instance, you don’t want to have to drive to their headquarters to have a secret meeting first. Public-key systems rely on the fact that some mathematical processes seem to be easy to do, but difficult to undo. For example, for Alice to take two large whole numbers and multiply them is relatively easy; for Eve to take the result and recover the original numbers seems much harder.

Public-key cryptography was invented by researchers at the Government Communications Headquarters (GCHQ) — the British equivalent (more or less) of the US National Security Agency (NSA) — who wanted to protect communications between a large number of people in a security organization. Their work was classified, and the British government neither used it nor allowed it to be released to the public. The idea of electronic commerce apparently never occurred to them. A few years later, academic researchers at Stanford and MIT rediscovered public-key systems. This time they were thinking about the benefits that widespread cryptography could bring to everyday people, not least the ability to do business over computers.

A team of engineers has developed a new type of camera that can detect radiation in terahertz (THz) wavelengths. This new imaging system can see through certain materials in high detail, which could make it useful for security scanners and other sensors.

Terahertz radiation is that which has wavelengths between microwaves and visible light, and these frequencies show promise in a new class of imaging systems. They can penetrate many materials and capture new levels of detail, and importantly the radiation is non-ionizing, meaning it’s safer than X-rays when used on humans.

The problem is that detectors that pick up THz wavelengths can be bulky, slow, expensive, difficult to run under practical conditions, or some combination of these. But in a new study, researchers at MIT, Samsung and the University of Minnesota have developed a system that can detect THz pulses quickly, precisely and at regular room temperature and pressure.

The invention could enhance the speed of electronic devices and improve security screening technology.

Chinese scientists have conceived of a new method for generating laser-like light that could significantly enhance the communication speed of everyday electronics, according to a report by the South China Morning Post.

The new device that makes this light possible is known as a free-electron laser, and it has been developed by scientists from the Shanghai Institute of Optics and Fine Mechanics under the Chinese Academy of Sciences.

The technology is not entirely new.


The new technology could easily find ready applications for improved security screening by making more efficient body-scanning machines or in the development of more advanced electronics such as smartphones.