Menu

Blog

Archive for the ‘space’ category: Page 1037

Dec 30, 2009

Ark-starship – too early or too late?

Posted by in categories: existential risks, lifeboat, space

It is interesting to note that the technical possibility to send interstellar Ark appeared in 1960th, and is based on the concept of “Blust-ship” of Ulam. This blast-ship uses the energy of nuclear explosions to move forward. Detailed calculations were carried out under the project “Orion”. http://en.wikipedia.org/wiki/Project_Orion_(nuclear_propulsion) In 1968 Dyson published an article “Interstellar Transport”, which shows the upper and lower bounds of the projects. In conservative (ie not imply any technical achievements) valuation it would cost 1 U.S. GDP (600 billion U.S. dollars at the time of writing) to launch the spaceship with mass of 40 million tonnes (of which 5 million tons of payload), and its time of flight to Alpha Centauri would be 1200 years. In a more advanced version the price is 0.1 U.S. GDP, the flight time is 120 years and starting weight 150 000 tons (of which 50 000 tons of payload). In principle, using a two-tier scheme, more advanced thermonuclear bombs and reflectors the flying time to the nearest star can reduce to 40 years.
Of course, the crew of the spaceship is doomed to extinction if they do not find a habitable and fit for human planet in the nearest star system. Another option is that it will colonize uninhabited planet. In 1980, R. Freitas proposed a lunar exploration using self-replicating factory, the original weight of 100 tons, but to control that requires artificial intelligence. “Advanced Automation for Space Missions” http://www.islandone.org/MMSG/aasm/ Artificial intelligence yet not exist, but the management of such a factory could be implemented by people. The main question is how much technology and equipment should be enough to throw at the moonlike uninhabited planet, so that people could build on it completely self-sustaining and growing civilization. It is about creating something like inhabited von Neumann probe. Modern self-sustaining state includes at least a few million people (like Israel), with hundreds of tons of equipment on each person, mainly in the form of houses, roads. Weight of machines is much smaller. This gives us the upper boundary of the able to replicate human colony in the 1 billion tons. The lower estimate is that there would be about 100 people, each of which accounts for approximately 100 tons (mainly food and shelter), ie 10 000 tons of mass. A realistic assessment should be somewhere in between, and probably in the tens of millions of tons. All this under the assumption that no miraculous nanotechnology is not yet open.
The advantage of a spaceship as Ark is that it is non-specific reaction to a host of different threats with indeterminate probabilities. If you have some specific threat (the asteroid, the epidemic), then there is better to spend money on its removal.
Thus, if such a decision in the 1960th years were taken, now such a ship could be on the road.
But if we ignore the technical side of the issue, there are several trade-offs on strategies for creating such a spaceship.
1. The sooner such a project is started, the lesser technically advanced it would be, the lesser would be its chances of success and higher would be cost. But if it will be initiated later, the greater would be chances that it will not be complete until global catastrophe.
2. The later the project starts, the greater are the chance that it will take “diseases” of mother civilization with it (e.g. ability to create dangerous viruses ).
3. The project to create a spaceship could lead to the development of technologies that threaten civilization itself. Blast-ship used as fuel hundreds of thousands of hydrogen bombs. Therefore, it can either be used as a weapon, or other party may be afraid of it and respond. In addition, the spaceship can turn around and hit the Earth, as star-hammer — or there maybe fear of it. During construction of the spaceship could happen man-made accidents with enormous consequences, equal as maximum to detonation of all bombs on board. If the project is implementing by one of the countries in time of war, other countries could try to shoot down the spaceship when it launched.
4. The spaceship is a means of protection against Doomsday machine as strategic response in Khan style. Therefore, the creators of such a Doomsday machine can perceive the Ark as a threat to their power.
5. Should we implement a more expensive project, or a few cheaper projects?
6. Is it sufficient to limit the colonization to the Moon, Mars, Jupiter’s moons or objects in the Kuiper belt? At least it can be fallback position at which you can check the technology of autonomous colonies.
7. The sooner the spaceship starts, the less we know about exoplanets. How far and how fast the Ark should fly in order to be in relative safety?
8. Could the spaceship hide itself so that the Earth did not know where it is, and should it do that? Should the spaceship communicate with Earth? Or there is a risk of attack of a hostile AI in this case?
9. Would not the creation of such projects exacerbate the arms race or lead to premature depletion of resources and other undesirable outcomes? Creating of pure hydrogen bombs would simplify the creation of such a spaceship, or at least reduce its costs. But at the same time it would increase global risks, because nuclear non-proliferation will suffer complete failure.
10. Will the Earth in the future compete with its independent colonies or will this lead to Star Wars?
11. If the ship goes off slowly enough, is it possible to destroy it from Earth, by self-propelling missile or with radiation beam?
12. Is this mission a real chance for survival of the mankind? Flown away are likely to be killed, because the chance of success of the mission is no more than 10 per cent. Remaining on the Earth may start to behave more risky, in logic: “Well, if we have protection against global risks, now we can start risky experiments.” As a result of the project total probability of survival decreases.
13. What are the chances that its computer network of the Ark will download the virus, if it will communicate with Earth? And if not, it will reduce the chances of success. It is possible competition for nearby stars, and faster machines would win it. Eventually there are not many nearby stars at distance of about 5 light years — Alpha Centauri, the Barnard star, and the competition can begin for them. It is also possible the existence of dark lonely planets or large asteroids without host-stars. Their density in the surrounding space should be 10 times greater than the density of stars, but to find them is extremely difficult. Also if nearest stars have not any planets or moons it would be a problem. Some stars, including Barnard, are inclined to extreme stellar flares, which could kill the expedition.
14. The spaceship will not protect people from hostile AI that finds a way to catch up. Also in case of war starships may be prestigious, and easily vulnerable targets — unmanned rocket will always be faster than a spaceship. If arks are sent to several nearby stars, it does not ensure their secrecy, as the destination will be known in advance. Phase transition of the vacuum, the explosion of the Sun or Jupiter or other extreme event can also destroy the spaceship. See e.g. A.Bolonkin “Artificial Explosion of Sun. AB-Criterion for Solar Detonation” http://www.scribd.com/doc/24541542/Artificial-Explosion-of-S…Detonation
15. However, the spaceship is too expensive protection from many other risks that do not require such far removal. People could hide from almost any pandemic in the well-isolated islands in the ocean. People can hide on the Moon from gray goo, collision with asteroid, supervolcano, irreversible global warming. The ark-spaceship will carry with it problems of genetic degradation, propensity for violence and self-destruction, as well as problems associated with limited human outlook and cognitive biases. Spaceship would only burden the problem of resource depletion, as well as of wars and of the arms race. Thus, the set of global risks from which the spaceship is the best protection, is quite narrow.
16. And most importantly: does it make sense now to begin this project? Anyway, there is no time to finish it before become real new risks and new ways to create spaceships using nanotech.
Of course it easy to envision nano and AI based Ark – it would be small as grain of sand, carry only one human egg or even DNA information, and could self-replicate. The main problem with it is that it could be created only ARTER the most dangerous period of human existence, which is the period just before Singularity.

Jul 1, 2009

Electron Beam Free Form Fabrication process — progress toward self sustaining structures

Posted by in categories: complex systems, engineering, habitats, lifeboat, space, sustainability

For any assembly or structure, whether an isolated bunker or a self sustaining space colony, to be able to function perpetually, the ability to manufacture any of the parts necessary to maintain, or expand, the structure is an obvious necessity. Conventional metal working techniques, consisting of forming, cutting, casting or welding present extreme difficulties in size and complexity that would be difficult to integrate into a self sustaining structure.

Forming requires heavy high powered machinery to press metals into their final desired shapes. Cutting procedures, such as milling and lathing, also require large, heavy, complex machinery, but also waste tremendous amounts of material as large bulk shapes are cut away emerging the final part. Casting metal parts requires a complex mold construction and preparation procedures, not only does a negative mold of the final part need to be constructed, but the mold needs to be prepared, usually by coating in ceramic slurries, before the molten metal is applied. Unless thousands of parts are required, the molds are a waste of energy, resources, and effort. Joining is a flexible process, and usually achieved by welding or brazing and works by melting metal between two fixed parts in order to join them — but the fixed parts present the same manufacturing problems.

Ideally then, in any self sustaining structure, metal parts should be constructed only in the final desired shape but without the need of a mold and very limited need for cutting or joining. In a salient progressive step toward this necessary goal, NASA demonstrates the innovative Electron Beam Free Forming Fabrication (http://www.aeronautics.nasa.gov/electron_beam.htm) Process. A rapid metal fabrication process essentially it “prints” a complex three dimensional object by feeding a molten wire through a computer controlled gun, building the part, layer by layer, and adding metal only where you desire it. It requires no molds and little or no tooling, and material properties are similar to other forming techniques. The complexity of the part is limited only by the imagination of the programmer and the dexterity of the wire feed and heating device.

Continue reading “Electron Beam Free Form Fabrication process — progress toward self sustaining structures” »

Jun 24, 2009

Lunar Reconnaissance Orbiter now orbiting Moon

Posted by in category: space

“The unmanned Lunar Reconnaissance Orbiter began orbiting the moon at 3:27 a.m. Arizona time Tuesday after a four-day journey from Cape Canaveral, Fla.”

http://www.azcentral.com/arizonarepublic/news/articles/2009/…n0624.html

Jun 16, 2009

The Lifeboat Conversation

Posted by in categories: education, finance, futurism, lifeboat, policy, space

Many years ago, in December 1993 to be approximate, I noticed a space-related poster on the wall of Eric Klien’s office in the headquarters of the Atlantis Project. We chatted for a bit about the possibilities for colonies in space. Later, Eric mentioned that this conversation was one of the formative moments in his conception of the Lifeboat Foundation.

Another friend, filmmaker Meg McLain has noticed that orbital hotels and space cruise liners are all vapor ware. Indeed, we’ve had few better depictions of realistic “how it would feel” space resorts since 1968’s Kubrick classic “2001: A Space Odyssey.” Remember the Pan Am flight to orbit, the huge hotel and mall complex, and the transfer to a lunar shuttle? To this day I know people who bought reservation certificates for whenever Pan Am would begin to fly to the Moon.

In 2004, after the X Prize victory, Richard Branson announced that Virgin Galactic would be flying tourists by 2007. So far, none.

A little later, Bigelow announced a fifty million dollar prize if only tourists could be launched to orbit by January 2010. I expect the prize money won’t be claimed in time.

Continue reading “The Lifeboat Conversation” »

May 4, 2009

Forever Young

Posted by in categories: biological, biotech/medical, futurism, human trajectories, media & arts, space

(Crossposted on the blog of Starship Reckless)

Eleven years ago, Random House published my book To Seek Out New Life: The Biology of Star Trek. With the occasion of the premiere of the Star Trek reboot film and with my mind still bruised from the turgid awfulness of Battlestar Galactica, I decided to post the epilogue of my book, very lightly updated — as an antidote to blasé pseudo-sophistication and a reminder that Prometheus is humanity’s best embodiment. My major hope for the new film is that Uhura does more than answer phones and/or smooch Kirk.

Coda: The Infinite Frontier

star-trekA younger science than physics, biology is more linear and less exotic than its older sibling. Whereas physics is (mostly) elegant and symmetric, biology is lunging and ungainly, bound to the material and macroscopic. Its predictions are more specific, its theories less sweeping. And yet, in the end, the exploration of life is the frontier that matters the most. Life gives meaning to all elegant theories and contraptions, life is where the worlds of cosmology and ethics intersect.

Continue reading “Forever Young” »

May 3, 2009

Swine Flu Update: are we entering an Age of Pandemics?

Posted by in categories: biological, biotech/medical, existential risks, futurism, geopolitics, nanotechnology, space, sustainability

May 2: Many U.S. emergency rooms and hospitals crammed with people… ”Walking well” flood hospitals… Clinics double their traffic in major cities … ER rooms turn away EMT cases. — CNN

Update May 4: Confirmed cases of H1N1 virus now at 985 in 20 countries (Mexico: 590, 25 deaths) — WHO. In U.S.: 245 confirmed U.S. cases in 35 states. — CDC.

“We might be entering an Age of Pandemics… a broad array of dangerous emerging 21st-century diseases, man-made or natural, brand-new or old, newly resistant to our current vaccines and antiviral drugs…. Martin Rees bet $1,000 that bioterror or bioerror would unleash a catastrophic event claiming one million lives in the next two decades…. Why? Less forest, more contact with animals… more meat eating (Africans last year consumed nearly 700 million wild animals… numbers of chickens raised for food in China have increased 1,000-fold over the past few decades)… farmers cut down jungle, creating deforested areas that once served as barriers to the zoonotic viruses…” — Larry Brilliant, Wall Street Journal


Mar 8, 2009

The Disclosure Project May 9th 2001 National Press Club Conference and DEAFENING SILENCE: Media Response to the May 9th Event and its Implications Regarding the Truth of Disclosure by Jonathan Kolber

Posted by in categories: defense, education, ethics, events, military, policy, space

On Wednesday, May 9th 2001, over twenty military, intelligence, government, corporate and scientific witnesses came forward at the National Press Club in Washington, DC to establish the reality of UFOs or extraterrestrial vehicles, extraterrestrial life forms, and resulting advanced energy and propulsion technologies.

DEAFENING SILENCE: Media Response to the May 9th Event
and its Implications Regarding the Truth of Disclosure

by Jonathan Kolber

Continue reading “The Disclosure Project May 9th 2001 National Press Club Conference and DEAFENING SILENCE: Media Response to the May 9th Event and its Implications Regarding the Truth of Disclosure by Jonathan Kolber” »

Mar 7, 2009

The ‘Sustainability Solution’ to the Fermi Paradox

Posted by in categories: human trajectories, space, sustainability

Jacob Haqq-Misra and Seth D. Baum (2009). The Sustainability Solution to the Fermi Paradox. Journal of the British Interplanetary Society 62: 47–51.

Background: The Fermi Paradox
According to a simple but powerful inference introduced by physicist Enrico Fermi in 1950, we should expect to observe numerous extraterrestrial civilizations throughout our galaxy. Given the old age of our galaxy, Fermi postulated that if the evolution of life and subsequent development of intelligence is common, then extraterrestrial intelligence (ETI) could have colonized the Milky Way several times over by now. Thus, the paradox is: if ETI should be so widespread, where are they? Many solutions have been proposed to account for our absence of ETI observation. Perhaps the occurrence of life or intelligence is rare in the galaxy. Perhaps ETI inevitably destroy themselves soon after developing advanced technology. Perhaps ETI are keeping Earth as a zoo!

The ‘Sustainability Solution’
The Haqq-Misra & Baum paper presents a definitive statement on a plausible but often overlooked solution to the Fermi paradox, which the authors name the “Sustainability Solution”. The Sustainability Solution states: the absence of ETI observation can be explained by the possibility that exponential or other faster-growth is not a sustainable development pattern for intelligent civilizations. Exponential growth is implicit in Fermi’s claim that ETI could quickly expand through the galaxy, an assumption based on observations of human expansion on Earth. However, as we are now learning all too well, our exponential expansion frequently proves unsustainable as we reach the limits of available resources. Likewise, because all civilizations throughout the universe may have limited resources, it is possible that all civilizations face similar issues of sustainability. In other words, unsustainably growing civilizations may inevitably collapse. This possibility is the essence of the Sustainability Solution.

Implications for the Search for Extraterrestrial Intelligence (SETI)
If the Sustainability Solution is true, then we may never observe a galactic-scale ETI civilization, for such an empire would have grown and collapsed too quickly for us to notice. SETI efforts should therefore focus on ETI that grow within the limits of their carrying capacity and thereby avoid collapse. These slower-growth ETI may possess the technological capacity for both radio broadcasts and remote interstellar exploration. Thus, SETI may be more successful if it is expanded to include a search of our Solar System for small, unmanned ETI satellites.

Implications for Human Civilization Management
Does the Sustainability Solution mean that humanity must live sustainably in order to avoid collapse? Not necessarily. Humanity could collapse even if it lives sustainably—for example, if it collides with a large asteroid. Alternatively, humanity may be able to grow rapidly for much longer—for example, until we have colonized the entire Solar System. Finally, the Sustainability Solution is only one of several possible solutions to the Fermi paradox, so it is not necessarily the case that all civilizations must grow sustainably or else face collapse. However, the possibility of the Sustainability Solution makes it more likely that humanity must live more sustainably if it is to avoid collapse.

Feb 24, 2009

I Don’t Want To Live in a Post-Apocalyptic World

Posted by in categories: asteroid/comet impacts, defense, existential risks, futurism, habitats, robotics/AI, space

Image from The Road film, based on Cormac McCarthy's book

How About You?
I’ve just finished reading Cormac McCarthy’s The Road at the recommendation of my cousin Marie-Eve. The setting is a post-apocalyptic world and the main protagonists — a father and son — basically spend all their time looking for food and shelter, and try to avoid being robbed or killed by other starving survivors.

It very much makes me not want to live in such a world. Everybody would probably agree. Yet few people actually do much to reduce the chances of of such a scenario happening. In fact, it’s worse than that; few people even seriously entertain the possibility that such a scenario could happen.

People don’t think about such things because they are unpleasant and they don’t feel they can do anything about them, but if more people actually did think about them, we could do something. We might never be completely safe, but we could significantly improve our odds over the status quo.

Continue reading “I Don't Want To Live in a Post-Apocalyptic World” »

Jan 15, 2009

What should be at the center of the U.S. stimulus package

Posted by in categories: existential risks, geopolitics, habitats, lifeboat, space, sustainability

The projected size of Barack Obama’s “stimulus package” is heading north, from hundreds of billions of dollars into the trillions. And the Obama program comes, of course, on top of the various Bush administration bailouts and commitments, estimated to run as high as $8.5 trillion.

Will this money be put to good use? That’s an important question for the new President, and an even more important question for America. The metric for all government spending ultimately comes down to a single query: What did you get for it?

If such spending was worth it, that’s great. If the country gets victory in war, or victory over economic catastrophe, well, obviously, it was worthwhile. The national interest should never be sacrificed on the altar of a balanced budget.

So let’s hope we get the most value possible for all that money–and all that red ink. Let’s hope we get a more prosperous nation and a cleaner earth. Let’s also hope we get a more secure population and a clear, strategic margin of safety for the United States. Yet how do we do all that?

Continue reading “What should be at the center of the U.S. stimulus package” »