Toggle light / dark theme

Last September, the James Webb Space Telescope, or JWST, discovered JWST-ER1g, a massive ancient galaxy that formed when the universe was just a quarter of its current age. Surprisingly, an Einstein ring is associated with this galaxy. That’s because JWST-ER1g acts as a lens and bends light from a distant source, which then appears as a ring—a phenomenon called strong gravitational lensing, predicted in Einstein’s theory of general relativity.

Astronomers have produced the largest 3D map of the universe, which can be explored in an interactive VR video. In the process, they’ve uncovered some tantalizing hints that our understanding of physics, including the ultimate fate of the cosmos, could be wrong.

The Dark Energy Spectroscopic Instrument (DESI) is a huge international project to map out the universe in three dimensions, which began collecting data in 2021. This early version of the map only includes data collected during the first year – 5.7 million galaxies and quasars out of the planned goal of 40 million. This data allows the scientists to peer as far as 11 billion light-years into deep space and time, providing a glimpse into the very early universe with an unprecedented precision of less than 1%.

With a view that zoomed-out, the cosmos resembles a colossal web, made up of bright strands of galaxies separated by unimaginably empty voids. If you feel up for an existential crisis, check out this VR fly-through video and remember that each of these blurry blobs of light is an entire galaxy, each containing millions of stars and billions of planets.

The laws of nature or physics are assumed to be everywhere the same, on the far side of the universe as sure as on the far side of your house. Otherwise science itself could not succeed. But are these laws equally constant across time? Might the deep laws of physics change over eons of time? The implications would be profound.

Free access to Closer to Truth’s library of 5,000 videos: http://bit.ly/376lkKN

Support the show with Closer To Truth merchandise: https://bit.ly/3P2ogje.

Watch more interviews on the laws of physics: https://bit.ly/3FQENnx.

Lee Smolin is a theoretical physicist, a researcher at the Perimeter Institute for Theoretical Physics, and an adjunct professor of physics at the University of Waterloo.

Register for free at CTT.com for subscriber-only exclusives: http://bit.ly/2GXmFsP

In the constellation Virgo, 700 light years away from Earth, the planet WASP-39b orbits the star WASP-39. The gas giant, which takes little more than four days to complete one orbit, is one of the best-studied exoplanets. Shortly after its commissioning in July 2022, NASA’s James Webb Space Telescope turned its high-precision gaze on the distant planet.

Fast radio bursts (FRBs) represent the most intense radio explosions in the universe. Since the first discovery in 2007, FRBs have garnered significant attention, culminating in the 2023 Shaw Prize in Astronomy. With yet unknown origin, these extreme cosmic bursts are among the most enigmatic phenomena in astronomy as well as physics.

“The problems arising when interpreting the data from WASP-39b are well known from many other exoplanets — regardless whether they are observed with Kepler, TESS, James Webb, or the future PLATO spacecraft,” said Dr. Nadiia Kostogryz.


While there is currently a myriad of techniques used to both discover exoplanets and calculate their physical characteristics, could other methods be developed to overcome specific data errors? This is what a recent study published in Nature Astronomy hopes to address as an international team of researchers investigated how a star’s magnetic field can be used to ascertain additional data for an exoplanet, which is traditionally done using conventional exoplanet detection methods, specifically the transit detection method. This study holds the potential to help astronomers establish new methods for discovering and characterizing exoplanets throughout the cosmos.

For the transit method, an exoplanet passes in front of its parent star, causing its starlight to slightly decrease and has been instrumental in discovering and characterizing thousands of exoplanets. However, astronomers have also discovered that a star’s limb darkening, which is the observed edge of the star, causes errors in transit light curves for exoplanets, despite using state-of-the-art atmospheric models to predict observations.

For the study, the researchers focused on WASP-39b, which is a gas giant located approximately 700 light-years from Earth and has been studied in great detail using a myriad of space telescopes, and most recently with NASA’s James Webb Space Telescope (JWST). However, astronomers have discovered inconsistencies between models and observations, which this study hopes to overcome.

How much of Venus’s atmosphere is being stripped by the Sun, and what can this tell us about how the planet lost its water long ago? This is what a recent study published in Nature Astronomy hopes to address as a team of international researchers examined data obtained from a 2021 Venus flyby by the BepiColombo spacecraft, which is a joint mission between the European Space Agency (ESA) and Japan Aerospace and Exploration Agency (JAXA) currently en route to Mercury. This study holds the potential to help researchers better understand the formation and evolution of planetary atmospheres, both within our solar system and beyond.

“Characterizing the loss of heavy ions and understanding the escape mechanisms at Venus is crucial to understand how the planet’s atmosphere has evolved and how it has lost all its water,” said Dr. Dominique Delcourt, who is a CNRS researcher at the Plasma Physics Laboratory (LPP) and the Principal Investigator of the Mass Spectrum Analyzer (MSA) instrument onboard BepiColombo, and a co-author on the study.

During its journey to Mercury, BepiColombo needs to conduct several gravity assists to slow down enough to enter Mercury’s orbit, with one such gravity assist occurring at Venus on August 10, 2021. During this flyby, BepiColombo passed through Venus’s magnetosheath, which is Venus’s version of a weak magnetic field that is produced by charged particles from the Sun interacting with Venus’s upper atmosphere. Over the course of 90 minutes, BepiColombo and its powerful instruments successfully measured data on how much atmospheric loss Venus is currently experiencing, which could help researchers better understand the formation and evolution of Venus’s atmosphere, and specifically how the planet lost its water long ago.