Toggle light / dark theme

Picture a smartphone clad in a casing that’s not just for protection but also doubles as a reservoir of electricity, or an electric car where the doors and floorboard store energy to propel it forward. Such technologies may one day be a reality, thanks to recent work by engineers at the University of California San Diego.

The researchers have developed what’s called a structural supercapacitor—a device that provides both structural support and storage capabilities. Such a device could add more power to electronic gadgets and vehicles without adding extra weight, allowing them to last longer on a single charge.

While the concept of structural supercapacitors is not entirely new, it has been a longstanding challenge to create a single device that excels at both bearing mechanical loads and storing efficiently. Traditional supercapacitors are great at energy storage but lack the mechanical strength to serve as structural components. On the flip side, structural materials can provide support but fall short when it comes to energy storage.

Tesla is stacking a massive supply of Cybertruck castings at Gigafactory Texas, hinting the production is near, which means deliveries aren’t far behind either.

Tesla Cybertruck production has been nearing for months as the company has shown early-stage validation, public road testing, crash assessments, and some of the best-built Cybertruck units, all within the past few months.

Production is obviously getting close, especially when we base this thought on the fact that public-road testing of RC-labeled, or release candidate, Cybertrucks have been spotted throughout the country over the past month and a half.

We often wonder where we might find a truly sustainable and abundant source of energy, and the answer might turn out to be in the emptiness all around us.
Watch my exclusive video Dark Stars At The Beginning Of Time: https://nebula.tv/videos/isaacarthur-dark-stars-at-the-beginning-of-time.
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.

More on Infinite Energy https://infiniteenergy.org.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Credits: Zero Point Energy & Vacuum Energy.

Nearly a century ago, physicists Max Born and J. Robert Oppenheimer developed a hypothesis about the functioning of quantum mechanics within molecules. These molecules consist of complex systems of nuclei and electrons. The Born-Oppenheimer approximation postulates that the movements of nuclei and electrons within a molecule occur independently and can treated separately.

This model works the vast majority of the time, but scientists are testing its limits. Recently, a team of scientists demonstrated the breakdown of this assumption on very fast time scales, revealing a close relationship between the dynamics of nuclei and electrons. The discovery could influence the design of molecules useful for solar energy conversion, energy production, quantum information science, and more.

The team, including scientists from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, Northwestern University, North Carolina State University, and the University of Washington, recently published their discovery in two related papers in Nature and Angewandte Chemie International Edition.

When Karl Wenner looks at his farm on Upper Klamath Lake in the mountains of southern Oregon, he sees a landscape in transition.

He and his partners converted part of their fields of barley into wetlands along the shore of the lake to filter runoff and protect the quality of the water that eventually flows back into the Klamath River, which empties into the Pacific on California’s coast. The project is part of a larger effort to clean up the river, remove dams and bring back salmon.

At Lakeside Farms, that transformation is being guided by a surprising source of information: the pollen collected by tens of thousands of honeybees. A Belgian start-up called BeeOdiversity enlisted Wenner, who is also a beekeeper, to help in a survey in the Klamath River Basin. Each colony, with 50,000 bees, harvests pollen over an area of more than two square miles, collecting as many as 4 billion tiny samples in a year. The resulting data creates a clear, accurate picture of the plant life and pollution present in the environment.

Kenya was a leader in mobile money. Now with highways with charging stations every 25km, and this.

Technology company Roam announced the launch of the ‘Made in Kenya’, fully electric, Roam Move shuttle bus mid last month. The zero-emissions shuttle bus and is equipped with a 170 kWh battery pack and can travel 200 kilometres on a single charge. It also has a fast plug-in battery charging that ensures it is fully charged in less than two hours.

With Honda’s EV offensive finally starting, the Japanese automaker is already giving us a preview of what could be its next-gen electric SUV and sedan concepts in its latest video.

After releasing new details on its first electric SUV, the 2024 Prologue, Honda is showing off two new EV concepts.

The Honda Prologue is co-developed with General Motors. Built on GM’s Ultium platform (the same one powering upcoming EVs, including the Blazer, Equinox, and Silverado), Honda’s electric SUV will feature an expected range of over 300 miles.

Saltwater is plentiful, but no good for drinking. Desalinization is the obvious solution, but a big problem isn’t taking the salt out, it’s where all that leftover salt goes. Excess salt accumulates, crystallizes, collects, and clogs a system. Dealing with this means maintenance, which means higher costs, which ultimately limits scalability.

The good news is that engineers at MIT and in China have succeeded in creating a desalination system that avoids this problem by intrinsically flushing accumulated salt as it is created, keeping the system clean. And what’s more, the whole thing is both scalable and entirely passive. The required energy all comes from gravity and the sun’s heat.

To do this, the device is constructed in such a way that it mimics the thermohaline circulation of the ocean on a small scale. This is a process in which temperature and density differentials drive a constant circulation and exchange. In the team’s system, this ultimately flushes concentrations of salt out of the system before it has a chance to collect.

Small mobile robots carrying sensors could perform tasks like catching gas leaks or tracking warehouse inventory. But moving robots demands a lot of energy, and batteries, the typical power source, limit lifetime and raise environmental concerns. Researchers have explored various alternatives: affixing sensors to insects, keeping charging mats nearby, or powering the robots with lasers. Each has drawbacks: Insects roam, chargers limit range, and lasers can burn people’s eyes.

Researchers at the University of Washington have now created MilliMobile, a tiny, self-driving robot powered only by surrounding light or radio waves. Equipped with a solar panel-like energy harvester and four wheels, MilliMobile is about the size of a penny, weighs as much as a raisin and can move about the length of a bus (30 feet, or 10 meters) in an hour even on a cloudy day. The robot can drive on surfaces such as concrete or packed soil and carry three times its own weight in equipment like a camera or sensors. It uses a to move automatically toward light sources so it can run indefinitely on harvested power.

The team will present its research Oct. 2 at the ACM MobiCom 2023 conference in Madrid, Spain.