Toggle light / dark theme

Say you have a cutting-edge gadget that can crack any safe in the world—but you haven’t got a clue how it works. What do you do? You could take a much older safe-cracking tool—a trusty crowbar, perhaps. You could use that lever to pry open your gadget, peek at its innards, and try to reverse-engineer it. As it happens, that’s what scientists have just done with mathematics.

Researchers have examined a deep neural network—one type of artificial intelligence, a type that’s notoriously enigmatic on the inside—with a well-worn type of mathematical analysis that physicists and engineers have used for decades. The researchers published their results in the journal PNAS Nexus on January 23. Their results hint their AI is doing many of the same calculations that humans have long done themselves.

The paper’s authors typically use deep neural networks to predict extreme weather events or for other climate applications. While better local forecasts can help people schedule their park dates, predicting the wind and the clouds can also help renewable energy operators plan what to put into the grid in the coming hours.

In January 2023, the Caltech Space Solar Power Project (SSPP) is poised to launch into orbit a prototype, dubbed the Space Solar Power Demonstrator (SSPD), which will test several key components of an ambitious plan to harvest solar power in space and beam the energy back to Earth.

Space solar power provides a way to tap into the practically unlimited supply of solar energy in outer space, where the energy is constantly available without being subjected to the cycles of day and night, seasons, and cloud cover.

-I think someone may have posted it, but if not its a good read.


Over the past year or so, CleanTechnica has published several stories about Sakuu, the innovative battery company located in Silicon Valley (where else?) that is working to bring 3D-printed solid-state batteries to market.

Last June, Robert Bagheri, founder and CEO of Sakuu, said in a press release, “As far as our solid state battery development, we are preparing to unveil a new category of rapid printed batteries manufactured at scale using our additive manufacturing platform. The sustainability and supply chain implications of this pioneering development will be transformational.” Based on the company’s Kavian platform, the rapid 3D-printed batteries will enable customizable, mass scale, and cost effective manufacturing of solid-state batteries while solving fundamental challenges confronting battery manufacturers today, the company said at that time.

University of Cambridge, working with colleagues from Austria, found a new way to make a possible replacement for rare-earth magnets: tetrataenite, a ‘cosmic magnet’ that takes millions of years to develop naturally in meteorites.

Previous attempts to make tetrataenite in the laboratory have relied on impractical, extreme methods. But the addition of a common element — phosphorus — could mean that it’s possible to make tetrataenite artificially and at scale, without any specialised treatment or expensive techniques.

The results are reported in the journal Advanced Science. A patent application on the technology has been filed by Cambridge Enterprise, the University’s commercialisation arm, and the Austrian Academy of Sciences.


Researchers have discovered a potential new method for making the high-performance magnets used in wind turbines and electric cars without the need for rare earth elements, which are almost exclusively sourced in China.

On a cold winter day, the warmth of the sun is welcome. Yet as humanity emits more and more greenhouse gases, the Earth’s atmosphere traps more and more of the sun’s energy and steadily increases the Earth’s temperature. One strategy for reversing this trend is to intercept a fraction of sunlight before it reaches our planet. For decades, scientists have considered using screens, objects or dust particles to block just enough of the sun’s radiation—between 1 or 2%—to mitigate the effects of global warming.

A University of Utah-led study explored the potential of using dust to shield sunlight. They analyzed different properties of dust particles, quantities of dust and the orbits that would be best suited for shading Earth. The authors found that launching dust from Earth to a way station at the “Lagrange Point” between Earth and the sun (L1) would be most effective but would require astronomical cost and effort. An alternative is to use moondust. The authors argue that launching from the moon instead could be a cheap and effective way to shade the Earth.

The team of astronomers applied a technique used to study around distant stars, their usual research focus. Planet formation is a messy process that kicks up lots of astronomical dust that can form rings around the host star. These rings intercept light from the central star and re-radiate it in a way that we can detect it on Earth. One way to discover stars that are forming is to look for these dusty rings.

ABB is today launching an innovative all-in-one Electric Vehicle (EV) charger, which provides the fastest charging experience on the market.

ABB’s new Terra 360 is a modular charger which can simultaneously charge up to four vehicles with dynamic power distribution. This means that drivers will not have to wait if somebody else is already charging ahead of them. They simply pull up to another plug. The new charger has a maximum output of 360 kW and is capable of fully charging any electric car in 15 minutes or less, meeting the needs of a variety of EV users, whether they need a fast charge or to top their battery up while grocery shopping.

“With governments around the world writing public policy that favors electric vehicles and charging networks to combat climate change, the demand for EV charging infrastructure, especially charging stations that are fast, convenient and easy to operate is higher than ever,” said Frank Muehlon, President of ABB’s E-mobility Division. “The Terra 360, with charging options that fit a variety of needs, is the key to fulfilling that demand and accelerating e-mobility adoption globally.”

Amazon founder Jeff Bezos’ space firm, Blue Origin, announced it has developed a method for producing solar cells and transmission wire using only lunar regolith.

Blue Origin famously filed a legal complaint against NASA after it snubbed its lunar lander design in favor of awarding SpaceX a contract for a modified Starship lander.