Menu

Blog

Archive for the ‘sustainability’ category: Page 639

Nov 12, 2013

The Future of Scientific Management, Today!

Posted by in categories: business, counterterrorism, defense, economics, education, engineering, ethics, existential risks, finance, futurism, science, singularity, sustainability, transparency

The Future of Scientific Management, Today! (Excerpt)

Transformative and Integrative Risk Management
Andres Agostini was asked this question:

Mr. David Shaw’s question, “…Andres, from your work on the future which management skills need to be developed? Classically the management role is about planning, organizing, leading and controlling. With the changes coming in the future what’s your view on how this management mix needs to change and adapt?…” Question was posited on an Internet Forum, formulated by Mr. David Shaw (Peterborough, United Kingdom) on October 09, 2013.

Continue reading “The Future of Scientific Management, Today!” »

Sep 17, 2013

Space-Mining For Our Fastest Depleting Resource: Helium

Posted by in categories: economics, engineering, futurism, physics, robotics/AI, space, sustainability

Most of us know helium as that cheap inert lighter-than-air gas we use to fill party balloons and inhale to increase voice-pitch as a party trick for kids. However, helium has much more important uses to humanity — from medical (e.g. MRIs), military and defense (submarine detectors use liquid helium to clean up noisy signals), next-generation nuclear reactors, space shuttles, solar telescopes, infra-red equipment, diving, arc welding, particle physics research (the super-magnets in particle colliders rely on liquid helium), the manufacture of many digital devices, growing silicon crystals, the production of LCDs and optical fibers [1].

The principal reason helium is so important is due to its ultra-low boiling-point and inert nature making it the ultimate coolant of the human race. As the isotope helium-3, helium is also used in nuclear fusion research [2]. However, our Earth supplies of helium are being used at an unprecedented rate and could be depleted within a generation [4] and at the current rate of consumption we will run out within 25 to 30 years. As the gas is often thought of as a cheap gas it is often wasted. However, those who understand the situation, such as Prof Richardson, co-chair of a recent US National Research Council inquiry into the coming helium shortage, warn that the gas is not cheap due to the supply being inexhaustible, but because of the Helium Privatisation Act passed in 1996 by the US Congress.

Helium only accounts for 0.00052% of the Earth’s atmosphere and the majority of the helium harvested comes from beneath the ground being extracted from minerals or tapped gas deposits. This makes it one of the rarest elements of any form on the planet. However, the Act required the helium stores [4] held underground near Amarillo in Texas to be sold off at a fixed rate by 2015 regardless of the market value, to pay off the original cost of the reserve. The Amarillo storage facility holds around half the Earth’s stocks of helium: around a billion cubic meters of the gas. The US currently supplies around 80 percent of the world’s helium supplies, and once this supply is exhausted one can expect the cost of the remaining helium on Earth to increase rapidly — as this is in all practicality quite a non-renewable resource.

There is no chemical way of manufacturing helium, and the supplies we have originated in the very slow radioactive alpha decay that occurs in rocks. It has taken 4.7 billion years for the Earth to accumulate our helium reserves, which we will have exhausted within about a hundred years of the US’s National Helium Reserve having been established in 1925. When this helium is released to the atmosphere, in helium balloons for example, it is lost forever — eventually escaping into space [5][6]. So what shall we do when this crucial resource runs out? Well, in some cases liquid nitrogen (−195°C) may be adopted as a replacement — but in many cases liquid nitrogen cannot be used as a stand alone coolant as tends to be trickier to work with (triple point and melting point at around −210°C) — so the liquid helium is used because it is capable of staying liquid at the extreme cool temperatures required. No more helium means no more helium liquid (−269°C) that is used to cool the NMR (nuclear magnetic resonance apparels), and in other machines such as MRI scanners. One wonders therefore must we look towards space exploration to replenish our most rare of resources on Earth?

Continue reading “Space-Mining For Our Fastest Depleting Resource: Helium” »

Aug 22, 2013

There will always be a Moon over Tokyo: Fukushima

Posted by in categories: climatology, engineering, ethics, nuclear energy, sustainability

News this past week on Fukushima has not been exactly reassuring has it. Meanwhile the pro-Nuclear lobby keep counting bananas. Here I’ve gathered together some of the recent news articles on the unfolding crisis. Interested to hear some comments on this one.

Fukushima leak is ‘much worse than we were led to believe’ / Aug 22, 2013, BBC NEWS http://www.bbc.co.uk/news/science-environment-23779561
Serious: Japan hikes Fukushima radiation danger level / August 21, 2013 RT NEWS http://rt.com/news/japan-fukushima-level-three-762/
Japan’s nuclear crisis deepens, China expresses ‘shock’ / Aug 21, 2013/ reuters http://www.reuters.com/article/2013/08/21/us-japan-fukushima…2B20130821
Worse than Chernobyl: The inner threat of Fukushima crisis / Aug 20, 2013/ RT http://rt.com/op-edge/chernobyl-fukushima-crisis-catastrophe-715/
Japan nuclear agency upgrades Fukushima alert level / Aug 21, 2013 / BBC NEWS http://www.bbc.co.uk/news/world-asia-23776345
Fukushima apocalypse: Years of ‘duct tape fixes’ could result in ‘millions of deaths’ / Aug 18 2013 / RT http://rt.com/news/fukushima-apocalypse-fuel-removal-598/
Fukushima’s Radioactive Water Leak: What You Should Know / National Geographic, Aug 2013 http://news.nationalgeographic.com/news/energy/2013/08/13080…ater-leak/

Aug 5, 2013

Meat grown in labs is the next logical step for food production

Posted by in categories: biotech/medical, futurism, sustainability

By Avi Roy, University of Buckingham

In his essay “Fifty Years Hence”, Winston Churchill speculated, “We shall escape the absurdity of growing a whole chicken in order to eat the breast or wing, by growing these parts separately under a suitable medium.”

At an event in London today, the first hamburger made entirely from meat grown through cell culture will be cooked and consumed before a live audience. In June at the TED Global conference in Edinburgh, Andras Forgacs took a step even beyond Churchill’s hopes. He unveiled the world’s first leather made from cells grown in the lab.

These are historic events. Ones that will change the discussion about lab-grown meat from blue-skies science to a potential consumer product which may soon be found on supermarket shelves and retail stores. And while some may perceive this development as a drastic shake-up in the world of agriculture, it really is part of the trajectory that agricultural technology is already following.

Continue reading “Meat grown in labs is the next logical step for food production” »

May 31, 2013

There is no war other than the one we are fighting with ourselves

Posted by in categories: economics, education, human trajectories, open source, sustainability

Just five years ago, anybody who spoke of technological unemployment was labeled a luddite, a techno-utopian, or just simply someone who doesn’t understand economics. Today things are very different – anybody from New York Times columnist Tom Friedman to CBS are jumping on the bandwagon.

Robots-Will-Steal-Your-Job-front

Those of us who have been speaking about the tremendous impact of automation in the workforce know very well that this isn’t a fad about to pass, but that it’s a problem that will only exacerbate in the future. Most of us agree on what the problem is (exponential growth of high-tech replacing humans faster and faster), and we agree that education will play a crucial role (and not coincidentally I started a companyEsplori – precisely to address this problem); but very few seem to suggest that we should use this opportunity to re-think our entire economic system and what the purpose of society should be. I am convinced this is exactly what we need to do. Published in 2012, my book, Robots Will Steal Your Job, But That’s OK: How to Survive the Economic Collapse and Be Happy – which you can also read online for free shows we might go about building a better tomorrow.

We have come to believe that we are dependent on governments and corporations for everything, and now that technology is ever more pervasive, our dependence on them is even stronger. And of course we don’t question the cycle of labor-for-income, income-for-survival and the conspicuous consumption model that has become dominant in virtually every country – and that not only is ecologically unsustainable, but it also generates immense income inequality.

Well, I do. I challenge the assumption that we should live to work, and even that we should work to live, for that matter. In an age where we already produce more than enough food, energy, and drinkable water for 7 billion people with little to no human labour, while 780 million lack access to clean water and 860 million are suffering from chronic hunger, it follows that the system we have in place isn’t allocating resources efficiently. And rather than going back to outdated ideologies (i.e. socialism), we can try new forms of societal structure; starting with open source philosophy, shared knowledge, self-reliance, and sustainable communities.

There are many transitional steps that we can take – reduced workweek, reform patent and copyright laws, switch to distributed and renewable energies – and there will be bumps along the road, no doubt. But if we move in the right direction, if we are ready to abandon ideologies and stick to whatever works best, I think we will prevail – simply because we will realise that there is no war other than the one we are fighting with ourselves.

May 29, 2013

The Power of the Move Outbound

Posted by in categories: education, engineering, futurism, habitats, philosophy, sustainability

boy_bubble2

There is a real power in the act of physically moving. In so doing, each and every morning I can escape the cacophonous curse of the ubiquitous ESPN in the gym locker room. I toss my bag in my locker and immediately escape to the pure, perfect, custom designed peace of my iPod’s audio world. I also well remember the glorious day I moved away from the hopelessness of my roommate’s awful sub-human, sub-slum stench and into my own private apartment. The universe changed miraculously overnight. I think you can get my drift. The simple act of moving itself can be powerfully transformational. Sometimes, there is not enough bleach and not enough distance between the walls to have the desired effect. Physically moving is quite often the only answer.

As we consider transhumanist societies, such transitional power is certainly the result by many magnitudes. My team has been engaged in developing the first permanent human undersea settlement over the past few decades. In this process we have had the distinct advantage of planning profoundly transhumanist advances specifically because of the advantageous context of relative community isolation. Further we have the benefit of deriving change as a community necessity — as a psychological and cultural imperative for this degree of advanced cultural evolution. It is a real kind of powerfully driven societal punctuated equilibrium that can be realized in few other ways.

In moving into the oceans, the submarine environment itself immediately establishes the boundary between the new, evolving culture and the old. While the effect and actual meaning of this boundary is almost always overrated, it is nonetheless a real boundary layer that allows the new culture to flourish sans the interferences or contamination from the old. Trying to accomplish transhumanist goals while culturally embedded is far more difficult and far less persuasive to those who must undergo dramatic change and for the transformation to actually take hold and survive generationally. But in a new, rather isolated environment, the pressure to evolve and integrate permanent change is not only easier, it is rather expected as a part of the reasonable process of establishment.

Continue reading “The Power of the Move Outbound” »

May 19, 2013

Who Wants To Live Forever?

Posted by in categories: business, ethics, existential risks, futurism, homo sapiens, human trajectories, life extension, philosophy, sustainability

Medical science has changed humanity. It changed what it means to be human, what it means to live a human life. So many of us reading this (and at least one person writing it) owe their lives to medical advances, without which we would have died.

Live expectancy is now well over double what it was for the Medieval Briton, and knocking hard on triple’s door.

What for the future? Extreme life extension is no more inherently ridiculous than human flight or the ability to speak to a person on the other side of the world. Science isn’t magic – and ageing has proven to be a very knotty problem – but science has overcome knotty problems before.

A genuine way to eliminate or severely curtail the influence of ageing on the human body is not in any sense inherently ridiculous. It is, in practice, extremely difficult, but difficult has a tendency to fall before the march of progress. So let us consider what implications a true and seismic advance in this area would have on the nature of human life.

Continue reading “Who Wants To Live Forever?” »

Mar 29, 2013

Life and Boats

Posted by in categories: lifeboat, sustainability

In an enormously influential article published in 1974 in Psychology Today, and in a longer version published later that year in BioScience, Garrett Hardin introduced the metaphor of the lifeboat for economic and ethical consideration. This conceptual construction was intended as an improvement over the then-popular ecological metaphor of “spaceship earth” coined by Kenneth Boulding in 1966. Interestingly, in the opening paragraph of “Living on a lifeboat”, Hardin indicates that metaphors in general may be understood as only an early stage in mentally approaching difficult problems, and that this stage may be surpassed as theory advances and becomes more rigorous.

In Hardin’s analogy, large entities such as nations or the biosphere are likened to a boat, while smaller entities – for example, migrating individuals or groups – are likened to swimmers trying to board the already cramped vessel and exploit whatever resources are on board. In the imagined scenario, it is believed that the boat is near carrying capacity, but exactly how near is not known with certainty given the many future possibilities. A central question focuses on at what point, if any, the risk of sinking the entire boat outweighs the good provided for each additional rescued swimmer.

The metaphor of the lifeboat has structured thought about conservation, economics, ethics, and any number of other disciplinary areas for decades. The question I would like to pose is the following: Is the lifeboat scenario still (or was it ever) an apt metaphor for structuring thought about ethical conservation of resources, or have we reached a stage where the boat should be scuttled in favor of either a new metaphor or more literal language? Please feel free to post any thoughts you may have on this issue.

Mar 19, 2013

Ten Commandments of Space

Posted by in categories: asteroid/comet impacts, biological, biotech/medical, cosmology, defense, education, engineering, ethics, events, evolution, existential risks, futurism, geopolitics, habitats, homo sapiens, human trajectories, life extension, lifeboat, military, neuroscience, nuclear energy, nuclear weapons, particle physics, philosophy, physics, policy, robotics/AI, singularity, space, supercomputing, sustainability, transparency

1. Thou shalt first guard the Earth and preserve humanity.

Impact deflection and survival colonies hold the moral high ground above all other calls on public funds.

2. Thou shalt go into space with heavy lift rockets with hydrogen upper stages and not go extinct.

Continue reading “Ten Commandments of Space” »

Jan 1, 2013

Cosmic Ray Gorilla

Posted by in categories: asteroid/comet impacts, biotech/medical, defense, ethics, events, existential risks, futurism, habitats, military, nuclear energy, nuclear weapons, policy, space, sustainability, transparency

http://www.sciencedaily.com/releases/2012/12/121231180632.htm

Excerpt: “Galactic cosmic radiation poses a significant threat to future astronauts,” said M. Kerry O’Banion, M.D., Ph.D., a professor in the University of Rochester Medical Center (URMC) Department of Neurobiology and Anatomy and the senior author of the study. “The possibility that radiation exposure in space may give rise to health problems such as cancer has long been recognized. However, this study shows for the first time that exposure to radiation levels equivalent to a mission to Mars could produce cognitive problems and speed up changes in the brain that are associated with Alzheimer’s disease.”

It appears when Eugene Parker wrote “Shielding Space Travelers” in 2006 he was right- and all the private space sycophants claiming radiation mitigation is trivial are wrong.

Only a massive water shield a minimum of 14 feet thick and massing 400 tons for a small capsule can shield human beings in deep space on long duration missions. And since a small capsule will not have sufficient space to keep a crew psychologically healthy on a multi-year journey it is likely such a shield will massive over a thousand tons.

Continue reading “Cosmic Ray Gorilla” »