Toggle light / dark theme

Physical cloaking works like a disappearing act for structural defects

Whether designing a window in an airliner or a cable conduit for an engine, manufacturers devote a lot of effort to reinforcing openings for structural integrity. But the reinforcement is rarely perfect and often creates structural weaknesses elsewhere.

Now, engineers at Princeton and Georgia Institute of Technology have developed a technique that can maintain by essentially hiding the opening from the surrounding forces. Rather than reinforcing the opening to protect against a few select forces, the new approach reorganizes nearly any set of forces that could affect the surrounding material to avoid the opening.

In an article, titled “Unbiased Mechanical Cloaks” in the Proceedings of the National Academy of Sciences, the researchers said they surrounded openings with microstructures designed to protect against many loads—external forces that cause , movement or deformation. The microstructures’ shape and orientation are calibrated to work with the most challenging loads facing the structure, allowing designers to counter multiple stresses at once.

A big data approach for next-generation battery electrolytes

Discovering new, powerful electrolytes is one of the major bottlenecks in designing next-generation batteries for electric vehicles, phones, laptops and grid-scale energy storage.

The most stable electrolytes are not always the most conductive. The most efficient batteries are not always the most stable. And so on.

“The electrodes have to satisfy very different properties at the same time. They always conflict with each other,” said Ritesh Kumar, an Eric and Wendy Schimdt AI in Science Postdoctoral Fellow working in the Amanchukwu Lab at the University of Chicago Pritzker School of Molecular Engineering (UChicago PME).

New concept for materials and production drastically reduces manufacturing time for aircraft doors

Passenger aircraft doors are still primarily manufactured by hand. A particularly time-consuming aspect is assembling the door structures using screws and rivets. Numerous intermediate steps are required to prevent direct contact between different materials—which would otherwise lead to corrosion.

However, replacing aluminum, titanium, and thermosets with primarily thermoplastic carbon fiber composites (CFRP), which can be welded together automatically without separating layers, makes the process much faster. Manufacturing time for the door structure drops from 110 hours to 4. The TAVieDA project by Fraunhofer IWU, Fraunhofer LBF, Trelleborg, and Airbus Helicopters has shown this clearly.

Another key factor in shortening assembly times is the for different aircraft door variants. The project team specifically looked for components across various door models that could be standardized—and found success, for example, with the crossbeam. The researchers designed a fully automated assembly line for the most common models and developed fixtures and clamping elements suitable for resistance and ultrasonic welding technologies.

Hyundai bets $21B on Atlas humanoid robots for US car assembly

Hyundai Motor Group is taking a bold step into the future of factory automation with plans to deploy Atlas humanoid robots at its Metaplant America facility in Georgia.

These advanced bipedal robots, developed by Boston Dynamics are designed to perform tasks traditionally carried out by humans.

As per a report on Nikkei Asia, Atlas will automate up to 40 percent of vehicle assembly work at the facility by the end of this year.

AI-powered advances unlock copper-zeolite catalysts for combating nitrogen oxide emissions

Increasingly stricter regulations on emissions from lean-burn engines, such as the Euro 7 standard, are approaching. This requires the development of catalytic materials that can reduce the toxic nitrogen oxides efficiently at low temperatures. Researchers at the Department of Physics at Chalmers University of Technology, together with industrial partner Umicore, now present a study showing how machine learning could help engines run cleaner.

Catalytic converters reduce the amount of toxic pollutants emitted into the air from a vehicle’s exhaust system. Stricter regulations on emissions standards within the coming years, such as the European Union’s proposed Euro 7, aim at further reducing air pollution from vehicles. Therefore, improved catalysts are needed to limit the emissions of harmful pollutants.

The main technology of selective catalytic reduction of uses ammonia as a reducing agent. Thus, the catalytic material should promote the formation of a nitrogen–nitrogen bond between nitrogen oxides and ammonia in an oxygen-rich environment and prevent unwanted reactions, which include the oxidation of ammonia to even more nitrogen oxides or nitrous oxide.

ZF wins brake-by-wire tech business for 5 million vehicles

Featuring the Electro-Mechanical Brake and by-wire technology on the rear brakes, the project will also include ZF’s Integrated Brake Control and traditional front calipers, creating a ‘hybrid’ braking system of by-wire and hydraulics that offers increased flexibility to the manufacturer. The agreement will also provide significant steering technology with ZF’s Electric Recirculating Ball Steering Gear. This cutting-edge braking technology combined with traditional braking systems and innovative steering tools further solidifies ZF’s position as the industry leader in providing complete chassis solutions to its customers while providing a major customer win.

“We are all proud to see ZF’s technology leadership in the Chassis segment providing tangible value for our customers. Our goal when combining our steering, braking, dampers and actuators as well as corresponding software businesses into a single division was to create the world’s most comprehensive Chassis Solutions product and system offering,” said Peter Holdmann, Board of Management member at ZF and head of Division Chassis Solutions. “This combined center of expertise allows us to offer comprehensive solutions that integrate advanced engineering, innovative design, and cutting-edge technology to deliver unparalleled performance and safety.”

The road to the software-defined vehicle With the Electro-Mechanical Brake (EMB) as a key component of the brake-by-wire technology, ZF lays the foundation for the software-defined vehicle that will lead to new functions and features, many that emphasize safety as much as driving comfort. One such feature being explored with by-wire technology is the ability for the vehicle to autonomously brake and steer in a crash situation.


ZF’s Electro-Mechanical Brake provides premium performance for automatic emergency braking, full energy recuperation and redundant fallback options up to full automated driving for passenger car and light truck segments.

/* */