Toggle light / dark theme

Australia’s improved alliance with China on defense, and Quantum Computing. Australia has been one of the early R&D groups working on Quantum Computing just like D-Wave, Stanford, UC Berkley, etc. So, this could help China drastically migrate much sooner to a Quantum infrastructure.


You think you’ve heard it before: Australia’s great security challenge this century is the dramatic shift in power to Asia epitomised by the rise of China.

But read of the latest Defence white paper if you want that abstract idea to sink in.

“Asia’s defence spending is now larger than Europe’s,” the paper states.

I am glad to see this article publish because it expresses well how technology and biological properties can be intertwined and advance collectively together. It will take this type of an approach to provide the foundation that is needed to enable the future visions that Kurzweil and others have shared around Singularity.

2 decades ago, Lucent experimented with the cells from fish to see how they could enable digital transmission through their experiments. They had some small successes; however, it never fully matured. Today, however, with Quantum we will finally see the advancements in technology, medicine, and science that many have only dreamed about or read from books or saw in movies.


Biological systems can explore every possible solution rapidly.

Read more

Interesting read; however, the author has limited his view to Quantum being only a computing solution when in fact it is much more. Quantum technology does offer faster processing power & better security; but, Quantum offers us Q-Dots which enables us to enrich medicines & other treatments, improves raw materials including fuels, even vegetation.

For the first time we have a science that cuts across all areas of technology, medical & biology, chemistry, manufacturing, etc. No other science has been able to achieve this like Quantum.

Also, the author in statements around being years off has some truth if we’re suggesting 7 yrs then I agree. However, more than 7 years I don’t agree especially with the results we are seeing in Quantum Networking.

Not sure of the author’s own inclusion on some of the Quantum Technology or Q-Dot experiements; however, I do suggest that he should look at Quantum with a broader lens because there is a larger story around Quantum especially in the longer term as well look to improve things like BMI, AI, longevity, resistent materials for space, etc/.


Completed ear and jaw bone structures printed with the Integrated Tissue-Organ Printing System (credit: Wake Forest Baptist Medical Center)

Using a sophisticated, custom-designed 3D printer, regenerative medicine scientists at Wake Forest Baptist Medical Center have proved that it is feasible to print living tissue structures to replace injured or diseased tissue in patients.

Reporting in Nature Biotechnology, the scientists said they printed ear, bone and muscle structures. When implanted in animals, the structures matured into functional tissue and developed a system of blood vessels. Most importantly, these early results indicate that the structures have the right size, strength and function for use in humans.

“This novel tissue and organ printer is an important advance in our quest to make replacement tissue for patients,” said Anthony Atala, M.D., director of the Wake Forest Institute for Regenerative Medicine (WFIRM) and senior author on the study. “It can fabricate stable, human-scale tissue of any shape. With further development, this technology could potentially be used to print living tissue and organ structures for surgical implantation.”

Read more

Congress held a meeting today on what NASA’s overall purpose should look like under the next few presidents. But agreement on just what that purpose might be—as witnesses discussed everything from the planned Mars trip to a proposal for a space station hotel—seemed far away.

“If we treated the Air Force like we do NASA, we’d have no flying aircraft. We cannot decide every few years what we want the purpose of the space program to be,” said former NASA administrator Mike Griffin to the House Committee on Science, Space, and Technology this morning.

The Mars mission was a topic of heavy discussion. At one point, Congressman Ed Perlmutter (D-CO) waved a MARS 2033 bumpersticker over his head (whether he brought it with him to the meeting for that specific purpose, or simply has it on him at all times was unclear)—only to have his colleague Congressman Jim Bridenstine (R-OK) snap that perhaps Republicans should print their own Mars 2032 bumper stickers.

Read more

In June, a team of programmers will release a ground-breaking new video game called No Man’s Sky, which uses artificial intelligence and procedural generation to self-create an entire cosmos full of planets. Running off 600,000 lines of code, the game creates an artificial galaxy populated by 18,446,744,073,709,551,616 unique planets that you can travel to and explore.

Though this artificial universe is realistic down to the dimensions of a blade of grass, faster than light-speed travel is available in order for players to bridge the unfathomable distances between stars.

Chief architect Sean Murray says No Man’s Sky is different than most games because the landscapes and distances aren’t faked. While most space-based games utilize a skybox that simply rotates between different modalities, No Man’s Sky is virtually limitless and employs real physics.

Read more

The quantum world and our world of perception obey different natural laws. Leiden physicists search for the border between both worlds. Now they suggest an upper limit in a study reported in Physical Review Letters.

The laws of the quantum domain do not apply to our everyday lives. We are used to assigning an exact location and time to objects. But fundamental particles can only be described by probability distributions—imagine receiving a traffic ticket for speeding 30 to 250 km/h somewhere between Paris and Berlin, with a probability peak for 140 km/h in Frankfurt.

Boundary

Because the laws are completely different in both worlds, a clear boundary might exist between them. Size and mass could then be used to determine whether an object obeys quantum or macroscopic laws, but the edge of this boundary is elusive. Leiden physicist Tjerk Oosterkamp and his research group have now established established an upper limit for quantum phenomena, closing in on the answer.

Read more

Quantum mechanics is littered with different interpretations, but at the core of the entire school of thought is the question of whether there are multiple universes of not. At the core of this idea is the thought, explicated by quantum mechanics, that everything we observe is simply the collapse of all probable scenarios into one specific outcome. Reality, viewed from that perspective, has a very cluttered cutting room floor. But are the things removed from the reel scraps or alternative narratives? There’s the big question.

To answer that question, we need to dive a bit into the mechanisms of the thing. Quantum mechanics says that all particles in the universe can be represented by what are called “wave functions.” A single wave function basically illustrates all the information about a specific system (i.e. a particle), detailing everything from position to velocity. The wave function itself also outlines all the probable outcomes of that system as well.

In other words, the wave function says what a particle is, and — more importantly — what it might being doing any any given time. It represents all possible futures of that particle.

Read more

Stunning, truly.


A spectacular new image of the Milky Way has been released to mark the completion of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). The APEX telescope in Chile has mapped the full area of the Galactic Plane visible from the southern hemisphere at submillimetre wavelengths — between infrared light and radio waves. This is the sharpest such map yet made, and complements those from recent space-based surveys. The pioneering 12-metre APEX telescope allows astronomers to study the cold Universe: gas and dust only a few tens of degrees above absolute zero.

APEX, the Atacama Pathfinder EXperiment telescope, is located at 5100 metres above sea level on the Chajnantor Plateau in Chile’s Atacama region. The ATLASGAL survey took advantage of the unique characteristics of the telescope to provide a detailed view of the distribution of cold dense gas along the plane of the Milky Way galaxy [1]. The new image includes most of the regions of star formation in the southern Milky Way [2].

The new ATLASGAL maps cover an area of sky 140 degrees long and 3 degrees wide, more than four times larger than the first ATLASGAL release [3]. The new maps are also of higher quality, as some areas were re-observed to obtain a more uniform data quality over the whole survey area.

Read more

Recent advances in lasers suggest that we may see rockets propelled by light earlier than we had imagined. NASA scientist Philip Lubin and his team are working on a system that would use Earth-based lasers to allow space travel to far-away places in just a fraction of the time needed with current technology.

photonic_propulsion

Using earth based lasers to push along a spacecraft instead of on board hydrocarbon-based fuel could dramatically reduce travel time to Mars, within our lifetime. Currently, it takes five months for a space craft to reach Mars. But, with photonic propulsion, it is likely that small crafts filled with experiments will reach Mars in just 3 days. Large spaceships with astronauts and life support systems will take only one month, which is about 20% of the duration of a current trip.

What’s next? Lubin believes that we may be able to send small crafts with scientific experiments to exoplanets as fast as 5% light speed in, perhaps, 30 years. Eventually, he claims that the technology will carry humans at speeds up to 20% light speed.

Read about it here.