Menu

Blog

Archive for the ‘nanotechnology’ category: Page 279

Mar 24, 2016

DNA Devices Perform Bio-Analytical Chemistry Inside Live Cells

Posted by in categories: biotech/medical, chemistry, electronics, nanotechnology

Last summer, the team reported another achievement: the development of a DNA nanosensor that can measure the physiological concentration of chloride with a high degree of accuracy.

“Yamuna Krishnan is one of the leading practitioners of biologically oriented DNA nanotechnology,” said Nadrian Seeman, the father of the field and the Margaret and Herman Sokol Professor of Chemistry at New York University. “These types of intracellular sensors are unique to my knowledge, and represent a major advance for the field of DNA nanotechnology.”

Chloride sensor

Continue reading “DNA Devices Perform Bio-Analytical Chemistry Inside Live Cells” »

Mar 21, 2016

Treating disease at stage zero

Posted by in categories: bioengineering, biotech/medical, health, information science, nanotechnology

It sounds really obvious, but hospitals aren’t for healthy people. The world’s entire health system is really there to react once people get ill. If doctors are able to catch an illness at stage one that’s great, but if it reaches stage three or four there’s often not that much that can be done. So what if we could treat patients at stage zero and predict the likelihood of contracting diseases? We could then get treatment to people who need it much earlier and take preventative steps to avoid illness altogether.

Currently, when we think of monitoring in healthcare we’re usually referring to monitoring patients’ reactions to drugs or treatments, but this is changing. No amateur runner’s uniform is complete these days without a Fitbit or some kind of analytics tool to monitor progress, so the idea of monitoring the healthy is becoming ingrained in the public’s consciousness. But Fitbits only scrape the surface of what we can do. What if the data from fitness trackers could be combined with medical records, census data and the details of supermarket loyalty cards to predict the likelihood of contracting a particular disease?

With big data we can move from reacting to predicting, but how do we move beyond just making predictions; how do we prevent disease from occurring altogether? Up until now all of our monitoring technology has been located outside of the body, but nano-sized entities made of DNA could one day patrol the body, only acting when they come into contact with specific cells – cancer cells, for example. The technology that would turn tiny machines – roughly the size of a virus – into molecular delivery trucks that transport medication is already being worked on by bioengineers. If this kind of technology can be used to treat cancer, without needing to release toxic agents into the body, can the same technology be inserted into a healthy person and lie in wait for the opportunity to fight disease on its host’s behalf?

Read more

Mar 17, 2016

Remarkable nanowires could let computers of the future grow their own chips

Posted by in categories: computing, engineering, materials, mobile phones, nanotechnology, particle physics, robotics/AI

Now, we’re hitting Terminator mode with this.


If you’re worried that artificial intelligence will take over the world now that computers are powerful enough to outsmart humans at incredibly complex games, then you’re not going to like the idea that someday computers will be able to simply build their own chips without any help from humans. That’s not the case just yet, but researchers did come up with a way to grow metal wires at a molecular level.

At the same time, this is a remarkable innovation that paves the way for a future where computers are able to create high-end chip solutions just as a plant would grow leaves, rather than having humans develop computer chips using complicated nanoengineering techniques.

Continue reading “Remarkable nanowires could let computers of the future grow their own chips” »

Mar 16, 2016

The power to heal: tiny generator could repair damaged brains, and give soldiers an edge

Posted by in categories: biotech/medical, computing, materials, nanotechnology, neuroscience

Chinese scientists have developed a nano-sized electric generator that can disappear without a trace inside the human body over time, a breakthrough they claim will bring biodegradable implants on microchips closer to reality.

The technology, reported on the latest issue of Science Advances journal, will have a wide range of applications as it can generate electric pulses to repair damaged neurons and power “brain chip” implants for soldiers in the future, pundits said.

At present, most implants must be surgically removed at the end of their lifespan. To address this issue, a number of small electric devices made from biodegradable materials that can absorbed by the human body after use have been developed around the world.

Continue reading “The power to heal: tiny generator could repair damaged brains, and give soldiers an edge” »

Mar 14, 2016

High-power biological wheels and motors imaged for first time

Posted by in categories: energy, nanotechnology

Behold – the only known example of a biological wheel. Loved by creationists, who falsely think they are examples of “intelligent design”, the bacterial flagellum is a long tail that is spun like a propeller by nano-sized protein motors.

Now these wheels and their gearing have been imaged in high resolution and three dimensions for the first time. Morgan Beeby and his colleagues at Imperial College London used an electron microscope to resolve the mechanisms that provide different amounts of torque to the motors.

The motors are diverse, coming in a wide variety of shapes, sizes and power outputs. Indeed, the diversity of the motors and the fact that they have evolved many times in different bacterial lineages, scuppers the creationist view that the machinery is “irreducibly complex”.

Continue reading “High-power biological wheels and motors imaged for first time” »

Mar 14, 2016

Nano-balls filled with poison wipe out metastatic cancer in mice

Posted by in categories: biotech/medical, nanotechnology

Polymers laden with chemotherapy drugs assemble at tumor cells and slip past their defenses.

Read more

Mar 14, 2016

Get ready for DNA-based computer chips!

Posted by in categories: chemistry, computing, electronics, materials, nanotechnology

Interesting — DNA Microchips to be released soon.


Researchers presented this incredible work at the national meeting and exposition of the American Chemical Society (ACS) in San Diego, California, on Sunday.

Adam T Woolley, professor of chemistry at Brigham Young University (BYU) said that they are planning to use DNA’s small size and base-pairing capabilities and ability to self-assemble, and direct it to make nanoscale structures that could be used for electronics.

Continue reading “Get ready for DNA-based computer chips!” »

Mar 14, 2016

‘DNA origami‘ paves way for faster, cheaper computer chips

Posted by in categories: computing, electronics, nanotechnology

Scientists has opened a door to faster, cheaper computer chips with the help of ‘DNA origami.’ “We would like to use DNA’s very small size, base-pairing capabilities and ability to self-assemble, and direct it to make nanoscale structures that could be used for electronics,” Adam T. Woolley said.

Read more

Mar 14, 2016

Researchers create new triple helix structure for DNA — Many potential uses in chemistry, tissue engineering, etc

Posted by in categories: biotech/medical, chemistry, engineering, nanotechnology

Could a cheap molecule used to disinfect swimming pools provide the key to creating a new form of DNA nanomaterials?

Cyanuric acid is commonly used to stabilize chlorine in backyard pools; it binds to free chlorine and releases it slowly in the water. But researchers at McGill University have now discovered that this same small, inexpensive molecule can also be used to coax DNA into forming a brand new structure: instead of forming the familiar double helix, DNA’s nucleobases — which normally form rungs in the DNA ladder — associate with cyanuric acid molecules to form a triple helix.

Read More ON Mcgill University

Continue reading “Researchers create new triple helix structure for DNA — Many potential uses in chemistry, tissue engineering, etc” »

Mar 14, 2016

Nanotechnology is revolutionizing water filters

Posted by in category: nanotechnology

New technology is making water filters cheaper and safer.

Read more