Menu

Blog

Archive for the ‘sustainability’ category: Page 590

Apr 20, 2016

This Chinese company just leap-frogged Tesla in the autonomous electric car race

Posted by in categories: robotics/AI, sustainability, transportation

Tesla may have been playing with autonomous cars for a while, but this Chinese company has taken it to the next level with this whopper.

Read more

Apr 18, 2016

IIT to Develop Nanosensors to Boost Farm Productivity

Posted by in categories: electronics, food, sustainability

Nice


HYDERABAD: In an initiative that may improve farm productivity, Indian Institute of Technology (IIT), Mumbai and Professor Jayashankar Telangana State Agriculture University (PJTSAU), Hyderabad have joined hands to develop nanosensors that can read the percentage of moisture and nutrients in the soil. This new research is expected to provide an important technological innovation in the field of agriculture. This is for the first time an IIT is collaborating with an agricultural university to devise solutions for the farmers.

“While we were exploring the possibilities of nano technology in various fields, the idea of using it in agriculture sector struck us. Thanks to the interest shown by some agricultural scientists at PJTSAU, we decided to develop nanosensors which can calculate the moisture content of the soil. There is a need for IITs to work for solving the problems faced by farmers and this is a step in that direction,” said V Ramgopal Rao, director of IIT Delhi, who was instrumental in initiating the research project, while he was the chief investigator of Centre of Excellence in Nanoelectronics Project at IIT, Mumbai.

While IIT, Mumbai will develop the nano soil sensors, PJTSAU will serve as the testing partner and conduct field tests to assess the efficacy of nanosensors. Already, funds have been allotted by IIT for the research project and a team of agricultural scientists and technologists has been formed to work on the project.

Continue reading “IIT to Develop Nanosensors to Boost Farm Productivity” »

Apr 18, 2016

Kumaun Univ’s project to turn plastic waste to graphene bags Rs 2 crore grant

Posted by in categories: biotech/medical, computing, sustainability

Like it — turning those old plastic into Graphene bags.


Summary: The project will also motivate people to collect used plastic bottles and other plastic waste, which is degrading to the environment, and help us in putting it to good use. Once the varsity is able to make graphene out of the plastic waste, it can eventually also be used as an alternate source of energy. We received an approval letter for the project proposal on April 16 and the initial grant of Rs 1,97,88,800 for a period of three years has been approved. “Dhami also said that much of the encouragement for research work in the varsity came from governor K K Paul, who has been motivating universities in the state to pursue research in nano science and nano technology. In fact, even wrappers and packets of chips are an environmental hazard.

DEHRADUN: A project proposed by Kumaun University in Nainital to synthesize graphene from plastic waste to use the material in energy and biomedical applications has received approval for a grant of nearly Rs 2 crore. Confirming that the grant has been approved, vice-chancellor of Kumaun University, H S Dhami, said, “It is a great achievement as the varsity aims at contributing to the society through research work. We received an approval letter for the project proposal on April 16 and the initial grant of Rs 1,97,88,800 for a period of three years has been approved.” The grant has been approved by The National Mission on Himalayan Studies (NMHS), G B Pant Institute of Himalayan Environment and Development (GBPIHED), Ministry of Environment, Forests and Climate Change.

Continue reading “Kumaun Univ’s project to turn plastic waste to graphene bags Rs 2 crore grant” »

Apr 16, 2016

SolaBat: A Hybrid Solar Cell and Battery System

Posted by in categories: solar power, sustainability

SolaBat is developing a hybrid device that utilizes both solar cells and more traditional electrochemical energy storage systems.

Last month, the Austrian Research Promotion Agency (FFG) announced a groundbreaking new project called SolaBat. Spearheaded by a group of researchers at the Graz University of Technology (TU Graz) led by Illie Hanzu, it aims to combine photovoltaic cells and electrochemical energy storage systems into a single hybrid device. Fundamentally, SolaBat plans to create a more simplified system of converting and storing solar power.

“Currently, single systems of photovoltaic cells which are connected together – mostly lead-based batteries and vast amounts of cable – are in use. Solar panels on the roof with a battery in the cellar. This takes up a lot of space, needs frequent maintenance and is not optimally efficient,” says Hanzu. “We want to make a battery and solar cell hybrid out of two single systems which is not only able to convert electrical energy but also store it.”

Read more

Apr 16, 2016

Caltech’s 2500 Orbiting Solar Panels Could Provide Earth With Limitless Energy

Posted by in categories: solar power, space, sustainability

The Space Solar Power Initiative (SSPI), a collaboration between Caltech and Northrup Grumman, has developed a system of lightweight solar power tiles which can convert solar energy to radio waves and can be placed in orbit to beam power to an energy-thirsty Earth.

One of the greatest challenges facing the 21st Century is the issue of power—how to generate enough of it, how to manufacture it cheaply and with the least amount of harmful side-effects, and how to get it to users.

The solutions will have to be very creative—rather like what the Space Solar Power Initiative (SSPI), a partnership between Caltech and Northrup Grumman, has devised.

Continue reading “Caltech’s 2500 Orbiting Solar Panels Could Provide Earth With Limitless Energy” »

Apr 15, 2016

Membrane spacecraft with 7.7 kW/kg power-to-weight ratio and 4000 ISP

Posted by in categories: solar power, space travel, sustainability

A ‘brane’ is a dynamical object that can propagate through spacetime. Flattening a spacecraft into a membrane, or 2-brane, can produce a low mass vehicle with ultra-high power-to-weight ratio (7.7 kW/kg using thin film solar cells). If most of this power is used by an array of thinned, distributed electrospray thrusters with a specific impulse of 4000 s, a Brane Craft could start in low Earth orbit, land on Phobos, and return to low Earth orbit.

Other possible targets include any near-Earth asteroid and most main belt asteroids. Propellant is stored as a liquid within a 10-micron wide gap between two Kapton sheets that form the main structure of the Brane Craft.

This NASA NIAC project will study how to design an ultra-light dynamic membrane spacecraft, with 3-axis attitude determination and control plus navigation, that can significantly change both its shape and orbit. Conventional sensors like star trackers will have to be replaced by 2-dimensional alternatives. Estimated mass is about 35 grams for a 1 square meter Brane Craft.

Continue reading “Membrane spacecraft with 7.7 kW/kg power-to-weight ratio and 4000 ISP” »

Apr 13, 2016

Quantum techniques to enhance solar cell efficiency

Posted by in categories: quantum physics, solar power, sustainability

Luv it — Improving Solar energy with Quantum.


A quantum process called singlet fission could boost solar cell efficiency by harnessing inaccessible parts of the solar spectrum.

Read more

Apr 12, 2016

Bigelow Aerospace and United Launch Alliance Join Forces to Foster a New Era of Sustainable Commercialization in Low Earth Orbit

Posted by in categories: space, sustainability

Colorado Springs, Colo., (April 11, 2016) – Bigelow Aerospace (BA) and United Launch Alliance (ULA) announced they are partnering to develop and deploy habitable volumes in Low Earth orbit (LEO). The volumes will be based on the Bigelow Aerospace B330 expandable module with the initial launch to orbit in 2020 on ULA’s Atlas V 552 configuration launch vehicle.

The B330 will have 330 cubic meters (12,000 cu ft) of internal space. The craft will support zero-gravity research including scientific missions and manufacturing processes. Beyond its industrial and scientific purposes, however, it has potential as a destination for space tourism and a craft for missions destined for the Moon and Mars.

“We are exploring options for the location of the initial B330 including discussions with NASA on the possibility of attaching it to the International Space Station (ISS),” said Robert Bigelow, founder and president of Bigelow Aerospace. “In that configuration, the B330 will enlarge the station’s volume by 30% and function as a multipurpose testbed in support of NASA’s exploration goals as well as provide significant commercial opportunities. The working name for this module is XBASE or Expandable Bigelow Advanced Station Enhancement.”

Read more

Apr 9, 2016

Global warming is changing the way the Earth spins on its axis

Posted by in category: sustainability

WASHINGTON (AP) — Global warming is shifting the way the Earth wobbles on its polar axis, a new NASA study finds.

Melting ice sheets — especially in Greenland — are changing the distribution of weight on Earth.

And that has caused both the North Pole and the wobble, which is called polar motion, to change course, according to a study published Friday in the journal Science Advances.

Continue reading “Global warming is changing the way the Earth spins on its axis” »

Apr 9, 2016

Scientists are developing graphene solar panels that generate energy when it rains

Posted by in categories: solar power, sustainability

Solar power is making huge strides as a reliable, renewable energy source, but there’s still a lot of untapped potential in terms of the efficiency of photovoltaic cells and what happens at night and during inclement weather. Now a solution has been put forward in the form of producing energy from raindrops.

Key to the new process is graphene: a ‘wonder’ material we’ve heard plenty about before. Because raindrops are not made up of pure water, and contain various salts that split up into positive and negative ions, a team from the Ocean University of China in Qingdao thinks we can harness power via a simple chemical reaction. Specifically, they want to use graphene sheets to separate the positively charged ions in rain (including sodium, calcium, and ammonium) and in turn generate electricity.

Early tests, using slightly salty water to simulate rain, have been promising: the researchers were able to generate hundreds of microvolts and achieve a respectable 6.53 percent solar-to-electric conversion efficiency from their customised solar panel.

Continue reading “Scientists are developing graphene solar panels that generate energy when it rains” »