Menu

Blog

Archive for the ‘mathematics’ category: Page 40

Jul 27, 2023

July 1816: Fresnel’s Evidence for the Wave Theory of Light

Posted by in categories: education, engineering, mathematics, particle physics

Until the early 20th century, the question of whether light is a particle or a wave had divided scientists for centuries. Isaac Newton held the former stance and advocated for his “corpuscular” theory. But by the early 19th century, the wave theory was making a comeback, thanks in part to the work of a French civil engineer named Augustin-Jean Fresnel.

Born in 1,788 to an architect, the young Fresnel had a strict religious upbringing, since his parents were Jansenists — a radical sect of the Catholic Church that embraced predestination. Initially he was home-schooled, and did not show early academic promise; he could barely read by the time he was eight. Part of this may have been due to all the political upheaval in France at the time. Fresnel was just one year old when revolutionaries stormed the Bastille in 1,789, and five when the Reign of Terror began.

Eventually the family settled in a small village north of Caen, and when Fresnel was 12, he was enrolled in a formal school. That is where he discovered science and mathematics. He excelled at both, so much so that he decided to study engineering, first at the École Polytechnique in Paris, and then at the École Nacionale des Ponts et Chaussées.

Jul 26, 2023

DeepMind’s New AI made a Breakthrough in Computer Science!

Posted by in categories: information science, mathematics, robotics/AI, science

👉 Invest in Blue-chip Art by signing up for Masterworks: https://www.masterworks.art/anastasi.
Purchase shares in great masterpieces from Pablo Picasso, Banksy, Andy Warhol, and more.
See important Masterworks disclosures: https://www.masterworks.com/about/disclaimer?utm_source=anas…subscriber.

Mentioned Videos:
AI designing Computer Chips: https://youtu.be/NeHgMaIkPuY
Deepmind AI made a Breakthrough in Math: https://youtu.be/DU6WINoehrg.

Continue reading “DeepMind’s New AI made a Breakthrough in Computer Science!” »

Jul 26, 2023

An 800-year-old mathematical trick could help with lunar navigation

Posted by in categories: mathematics, satellites

Kamilla Cziráki, a geophysics student at the Faculty of Science of Eötvös Loránd University (ELTE), has taken a new approach to researching the navigation systems that can be used on the surface of the moon to plan future journeys.

Working with Professor Gábor Timár, head of the Department of Geophysics and Space Sciences, Cziráki calculated the parameters used in the Earth’s GPS system for the moon using the method of mathematician Fibonacci, who lived 800 years ago. Their findings have been published in the journal Acta Geodaetica et Geophysica.

Now, as humanity prepares to return to the moon after half a century, the focus is on possible methods of lunar navigation. It seems likely that the modern successors to the lunar vehicles of the Apollo missions will now be assisted by some form of satellite navigation, similar to the GPS system on Earth. In the case of Earth, these systems do not take into account the actual shape of our planet, the geoid, not even the surface defined by sea level, but a rotating ellipsoid that best fits the geoid.

Jul 25, 2023

Math That Lets You Think Locally but Act Globally

Posted by in categories: mapping, mathematics

Knowing a little about the local connections on flight maps and other networks can reveal a lot about a system’s global structure.

Jul 21, 2023

Over just a few months, ChatGPT went from accurately answering a simple math problem 98% of the time to just 2%, study finds

Posted by in categories: mathematics, robotics/AI

Been Corporate-ized


The chatbot gave wildly different answers to the same math problem, with one version of ChatGPT even refusing to show how it came to its conclusion.

Jul 19, 2023

Here’s what quantum computing is—and how it’s going to impact the future of work, according to a software engineer

Posted by in categories: computing, health, information science, mathematics, mobile phones, particle physics, quantum physics

The digital devices that we rely on so heavily in our day-to-day and professional lives today—smartphones, tablets, laptops, fitness trackers, etc.—use traditional computational technology. Traditional computers rely on a series of mathematical equations that use electrical impulses to encode information in a binary system of 1s and 0s. This information is transmitted through quantitative measurements called “bits.”

Unlike traditional computing, quantum computing relies on the principles of quantum theory, which address principles of matter and energy on an atomic and subatomic scale. With quantum computing, equations are no longer limited to 1s and 0s, but instead can transmit information in which particles exist in both states, the 1 and the 0, at the same time.

Quantum computing measures electrons or photons. These subatomic particles are known as quantum bits, or ” qubits.” The more qubits are used in a computational exercise, the more exponentially powerful the scope of the computation can be. Quantum computing has the potential to solve equations in a matter of minutes that would take traditional computers tens of thousands of years to work out.

Jul 19, 2023

Psychological study suggests arithmetic is biologically-based and a natural consequence of our perception

Posted by in categories: engineering, mathematics

Everyone knows that 2 + 2 = 4, but why do we have arithmetic in the first place, and why is it true? Researchers at the University of Canterbury have recently answered these questions by “reverse engineering” arithmetic from a psychological perspective. To do this, they considered all possible ways that quantities could be combined, and proved (for the first time in mathematical terms) that addition and multiplication are the simplest.

Their is based on four —principles of perceptual organization—that shape how we and other animals experience the world. These assumptions eliminate all possibilities except arithmetic, like how a sculptor’s work reveals a statue hidden in a block of stone.

Monotonicity is the idea of “things changing in the same direction,” and helps us keep track of our place in the world, so that when we approach an object it looms larger but smaller when we move away. Convexity is grounded in intuitions of betweenness. For example, the four corners of a football pitch define the playing field even without boundary lines connecting them. Continuity describes the smoothness with which objects seem to move in space and time. Isomorphism is the idea of sameness or analogy. It’s what allows us to recognize that a cat is more similar to a dog than it is to a rock.

Jul 19, 2023

Will AI make MC the MVP of particle physics?

Posted by in categories: mathematics, particle physics, robotics/AI

Originally developed nearly a century ago by physicists studying neutron diffusion, Monte Carlo simulations are mathematical models that use random numbers to simulate different kinds of events. As a simple example of how they work, imagine you have a pair of six-sided dice, and you’d like to determine the probability of the dice landing on any given number.

“You take your dice, and you repeat the same exercise of throwing them on the table, and you look at the outcome,” says Susanna Guatelli, associate professor of physics at the University of Wollongong in Australia.

By repeating the dice-throwing experiment and recording the number of times your dice land on each number, you can build a “probability distribution”—a list giving you the likelihood your dice will land on each possible outcome.

Jul 17, 2023

Generative AI And Data Science Have Mightily Paired Up To Reinvent Data Strategies, Exemplified Via Release Of OpenAI’s ChatGPT Code Interpreter

Posted by in categories: mathematics, robotics/AI, science

In today’s column, I am going to identify and explain the momentous pairing of both generative AI and data science. These two realms are each monumental in their own respective ways, thus they are worthy of rapt attention on a standalone basis individually. On top of that, when you connect the dots and bring them together as a working partnership, you have to admire and anticipate big changes that will arise, especially as the two fields collaboratively reinvent data strategies all told.

This is entirely tangible and real-world, not merely something abstract or obtuse.


I will first do a quick overview of generative AI. If you are already versed in generative AI, perhaps do a fast skim on this portion.

Continue reading “Generative AI And Data Science Have Mightily Paired Up To Reinvent Data Strategies, Exemplified Via Release Of OpenAI’s ChatGPT Code Interpreter” »

Jul 16, 2023

We can’t predict the future, but appreciating its uncertainties will make us happier

Posted by in categories: biological, evolution, mathematics, neuroscience

In it, he explores how we can make better, scientifically informed predictions about the world around us, using maths. “Mathematics can provide us with the objective tools to bypass the foibles of our own biology – the limitations imposed by our own thought processes, the compulsions that ultimately make us human, but let us down when it comes to making inferences about the world around us,” he writes. “They are humanity’s shortcuts: the preconceptions and cognitive biases, refined over millennia of evolution, that all too often lead us astray when we try to apply our brain’s old rules to our society’s new environments.”

No matter how tempting it is to think, “Ooh, that’s a bit spooky” when faced with a completely random coincidence or chance occurrence, we should all be expecting unusual things to happen all the time, he says.

Yates describes a person who, when browsing in a secondhand bookshop far from where they grew up, opens a copy of their favourite children’s book, only to find their own name inscribed inside. Yet, he says, “the law of truly large numbers” dictates that, just as someone wins the lottery almost every week, with enough opportunities, such extraordinary coincidences are far more likely to happen than you might think. “There are so many different types of coincidences that make us say: ‘Well, that’s extraordinary.’ But it’s not unlikely that some of them happen to us every so often.”

Page 40 of 148First3738394041424344Last