Menu

Blog

Archive for the ‘neuroscience’ category: Page 49

Jun 27, 2024

Can MRI Help Elucidate Iron-Based Neurotoxicity?

Posted by in categories: biotech/medical, neuroscience

A new technique combining magnetic resonance imaging and x-ray fluorescence can characterize, with single-neuron resolution, the presence of toxic forms of iron that might be associated with neurodegenerative diseases.

Iron plays a major role in life. Most obviously, it keeps us alive, helping to ferry oxygen around our bloodstreams. It is also essential in cellular energy production, in the immune-system response, and in brain function—where it helps catalyze the synthesis of dopamine and other neurotransmitters. Iron can, however, be a double-edged sword. An iron excess has been implicated in many ailments, including neurodegenerative conditions such as Alzheimer’s, multiple sclerosis, and Parkinson’s disease—where dopaminergic neurons (neurons that use iron to synthesize dopamine) degenerate. It is thought that the toxicity of iron depends on how it is stored: iron firmly bound within proteins such as ferritin may be less toxic than iron more loosely bound to low-affinity sites, where it is more able to participate in reactions that generate cell-damaging hydroxyl radicals [1].

Jun 27, 2024

Engineers produce the world’s first practical Titanium-sapphire laser on a chip

Posted by in categories: computing, neuroscience, quantum physics

As lasers go, those made of Titanium-sapphire (Ti: sapphire) are considered to have “unmatched” performance. They are indispensable in many fields, including cutting-edge quantum optics, spectroscopy, and neuroscience. But that performance comes at a steep price. Ti: sapphire lasers are big, on the order of cubic feet in volume. They are expensive, costing hundreds of thousands of dollars each. And they require other high-powered lasers, themselves costing $30,000 each, to supply them with enough energy to function.

As a result, Ti: lasers have never achieved the broad, real-world adoption they deserve—until now. In a dramatic leap forward in scale, efficiency, and cost, researchers at Stanford University have built a Ti: sapphire laser on a chip. The prototype is four orders of magnitude smaller (10,000x) and three orders less expensive (1,000x) than any Ti: sapphire laser ever produced.

“This is a complete departure from the old model,” said Jelena Vučković, the Jensen Huang Professor in Global Leadership, a professor of electrical engineering, and senior author of the paper introducing the chip-scale Ti: sapphire laser published in the journal Nature.

Jun 27, 2024

Revolutionizing Regeneration: Rat Stem Cells Restore Mouse Brain Circuits

Posted by in categories: biotech/medical, evolution, neuroscience

Research teams have successfully regenerated mouse brain circuits using rat stem cells, showcasing a new method for restoring brain function and studying interspecies brain development.

These findings open up possibilities for treating neurological diseases and understanding brain evolution, while also hinting at future clinical applications and ethical challenges in using similar techniques for human organ transplantation.

Scientists regenerate neural pathways in mice with cells from rats.

Jun 26, 2024

Neuralink’s first human patient Noland Arbaugh says his brain chip can be hacked: ‘It is what it is’

Posted by in categories: biotech/medical, cybercrime/malcode, neuroscience

Hacking my brain implant wouldn’t do much, he asserted, adding, “You might be able to see like some of the brain signals. You might be able to see some of the data that Neuralink’s collecting.”

Get ready to catch the final stages of the World Cup only on Crickit. Anytime, Anywhere. Explore now!

Norland Arbaugh did not specify the data that is being collected by Neuralink chip which is almost the size of a coin and contains thousands of electrodes that monitor and stimulate brain activity, as per the company. This information is digitally transmitted to researchers.

Jun 26, 2024

Brain in a dish — the potential of organoid intelligence and biological computing

Posted by in categories: biotech/medical, neuroscience, robotics/AI

In February 2023, Frontiers in Science published an article titled “Organoid Intelligence (OI): The New Frontier in Biocomputing and Intelligence-in-a-Dish.” Since its publication, this research has sparked significant scientific interest and gained coverage in Forbes, Financial Times, Wall Street Journal, BBC, CNN and many others.

So, what is organoid intelligence and why has this article gathered such attention?

Continue reading “Brain in a dish — the potential of organoid intelligence and biological computing” »

Jun 26, 2024

The brain makes a lot of waste. Now scientists think they know where it goes

Posted by in categories: biotech/medical, neuroscience

About 170 billion cells are in the brain, and as they go about their regular tasks, they produce waste — a lot of it.


The brain appears to rely on synchronized waves to wash out waste products, including toxins associated with Alzheimer’s disease.

Jun 26, 2024

Nf1 gene mutations disrupt brain cell plasticity and motor learning in mice

Posted by in categories: biotech/medical, genetics, neuroscience

Neurogenetic disorders, such as neurofibromatosis type 1 (NF1), are diseases caused by a defect in one or more genes, which can sometimes result in cognitive and motor impairments. Better understanding the neural underpinning of these disorders and how they affect motor and cognitive abilities could contribute to the development of new treatment strategies.

Researchers at Stanford University and Washington University School of Medicine recently performed a study on mice aimed at investigating the impact of Nf1 gene mutations, which cause the NF1 neurogenetic disorder, on oligodendroglial plasticity, an adaptive brain process known to contribute to cognitive and motor functions.

Their findings, published in Nature Neuroscience, provide strong evidence that Nf1 mutations delay the development of oligodendroglia, a type of glial cells that support the functioning of the central nervous system, causing disruptions in motor learning.

Jun 26, 2024

Beyond neurons and spikes: cognon, the hierarchical dynamical unit of thought

Posted by in categories: neuroscience, physics

From the dynamical point of view, most cognitive phenomena are hierarchical, transient and sequential. Such cognitive spatio-temporal processes can be represented by a set of sequential metastable dynamical states together with their associatedions: The state is quasi-stationary close to one metastable state before a rapidion to another state. Hence, we postulate that metastable states are the central players in cognitive information processing. Based on the analogy of quasiparticles as elementary units in physics, we introduce here the quantum of cognitive information dynamics, which we term “cognon”. A cognon, or dynamical unit of thought, is represented by a robust finite chain of metastable neural states. Cognons can be organized at multiple hierarchical levels and coordinate complex cognitive information representations.

Jun 26, 2024

Mind mapper: MIT’s new tech shows whole brain hemispheres in 3D detail

Posted by in categories: innovation, neuroscience

MIT just produced three groundbreaking innovations that allowed them to map whole hemispheres of the human brain.

Jun 26, 2024

Neural circuits

Posted by in category: neuroscience

A parasitic fungus compels its insect host to behave in strange ways by hijacking secretory neurons and circadian pathways.

Page 49 of 988First4647484950515253Last