Menu

Blog

Archive for the ‘biotech/medical’ category: Page 33

Aug 17, 2024

Largest animal genome sequenced — and just 1 chromosome is the size of the entire human genome

Posted by in category: biotech/medical

Scientists have sequenced the largest known animal genome — and it’s 30 times bigger than the human genome.

The genome belongs to the South American lungfish (Lepidosiren paradoxa), a primeval, air-breathing fish that “hops” onto land from the water using weird, limb-like fins. The fish’s DNA code expanded dramatically over the past 100 million years of evolutionary history, racking up the equivalent of one human genome every 10 million years, researchers found.

Aug 17, 2024

How Probiotics cured cancer, and saved lives after Chernobyl

Posted by in categories: biotech/medical, military

During the Cold War Era of the 1960s, Russian researchers were looking for ways to support the immune system in conditions running the gamut from cancer to bio-warfare agents. Eastern Europeans, with a cultural love of fermented milk products, logically looked to probiotics, or lactobacillus, for immune support because it was safe, cheap and effective.

A Bulgarian researcher and medical doctor, Dr. Ivan Bogdanov, researched lactobacillus bacteria in the 1960s. Bogdanov believed that specific strains of probiotics could have anti-tumor properties.

The doctor’s research team injected mice with a sarcoma cancer, then administered a crude mixture of cell fragments from a strain of Lactobacillus delbrukii. Bogdanov observed that the cancer disappeared within a few days. Subsequently, researchers attempted to re-grow cancer in the same mice, but without success — the mice seemed immune to the cancer cells.

Aug 17, 2024

Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases

Posted by in categories: biotech/medical, neuroscience

Researchers have developed a new two-photon fluorescence microscope that captures high-speed images of neural activity at cellular resolution. By imaging much faster and with less harm to brain tissue than traditional two-photon microscopy, the new approach could provide a clearer view of how neurons communicate in real time, leading to new insights into brain function and neurological diseases.

Aug 17, 2024

Breaking Barriers in Optics: The Power of Coherence Entropy

Posted by in categories: biotech/medical, internet

Scientists have made a groundbreaking advancement in understanding light propagation through complex media, potentially revolutionizing fields like optical communication and medical imaging.

By introducing the concept of coherence entropy, a new metric for evaluating light behavior, they have provided a reliable tool for managing light fields in challenging environments. This research could significantly enhance the performance of systems that rely on light, particularly in situations where traditional methods fail due to media distortion.

Light technology is at the heart of many cutting-edge innovations, from high-speed internet to advanced medical imaging. However, transmitting light through challenging environments, such as turbulent atmospheres or deformed optical systems, has always posed a significant hurdle. These complexities can distort and disrupt the light field, making it difficult to achieve clear and reliable results. Scientists have long sought ways to overcome these limitations, and a new breakthrough may hold the key to advance practical applications.

Aug 17, 2024

Newly discovered protein stops DNA damage

Posted by in categories: biotech/medical, food

Researchers from Western University have discovered a protein that has the never-before-seen ability to stop DNA damage in its tracks. The finding could provide the foundation for developing everything from vaccines against cancer, to crops that can withstand the increasingly harsh growing conditions brought on by climate change.

Aug 17, 2024

Natural killer cells show their cancer-fighting worth

Posted by in category: biotech/medical

Although natural-killer-cell therapies are safer than T-cell therapies and offer other advantages, they require upgrades to overcome their limited lifespan and susceptibility to immunosuppression.

Aug 17, 2024

Current Events: Bioelectrical Gradients Guide Stem Cell Morphology

Posted by in categories: biotech/medical, chemistry, neuroscience

ABOVE: Researchers recapitulate electrical gradients in vitro to help guide stem cell differentiation for neural regeneration. ©istock, Cappan.

The dance of development is electric. Bioelectrical gradients choreograph embryonic growth, signaling to stem cells what cell types they should become, where they should travel, who their neighbors should be, and what structures they should form.1 The intensity and location of these signals serve as an electrical scaffold to map out anatomical features and guide development. Bioelectricity also shapes tissue regeneration.2 Tapping into these mechanisms is of special interest to researchers who grapple with the challenge of regenerating injured nerves.3

One such curious team from Stanford University and the University of Arizona recently reported a new approach using electrically conductive hydrogels to induce differentiation of human mesenchymal stem cells into neurons and oligodendrocytes in vitro.4 Their findings, published in the Journal of Materials Chemistry B, provide important proof of principle for future studies of biocompatible materials to electrically augment transplanted and endogenous cells after injury.

Aug 16, 2024

Mammary glands in a dish − what miniature organs reveal about evolution, lactation, regeneration and breast cancer

Posted by in categories: biotech/medical, evolution, food

Organoids of mammary glands can help researchers more efficiently study lactation, with findings that could apply to fields ranging from agriculture to medicine.

Aug 16, 2024

Engineers design tiny batteries for powering cell-sized robots

Posted by in categories: biotech/medical, chemistry, robotics/AI

A tiny battery designed by MIT engineers could enable the deployment of cell-sized, autonomous robots for drug delivery within in the human body, as well as other applications such as locating leaks in gas pipelines.

The , which is 0.1 millimeters long and 0.002 millimeters thick—roughly the thickness of a human hair—can capture oxygen from air and use it to oxidize zinc, creating a current of up to 1 volt. That is enough to power a small circuit, sensor, or actuator, the researchers showed.

“We think this is going to be very enabling for robotics,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study. “We’re building robotic functions onto the battery and starting to put these components together into devices.”

Aug 16, 2024

Breakthrough brain-computer interface allows man with ALS to speak again

Posted by in categories: biotech/medical, computing, neuroscience

“Not being able to communicate is so frustrating and demoralizing. It is like you are trapped,” Harrell said. “Something like this technology will help people back into life and society.”

For the researchers involved, seeing the impact of their work on Harrell’s life has been deeply rewarding. “It has been immensely rewarding to see Casey regain his ability to speak with his family and friends through this technology,” said the study’s lead author, Nicholas Card, a postdoctoral scholar in the UC Davis Department of Neurological Surgery.

Leigh Hochberg, a neurologist and neuroscientist involved in the BrainGate trial, praised Harrell and other participants for their contributions to this groundbreaking research. “Casey and our other BrainGate participants are truly extraordinary. They deserve tremendous credit for joining these early clinical trials,” Hochberg said. “They do this not because they’re hoping to gain any personal benefit, but to help us develop a system that will restore communication and mobility for other people with paralysis.”

Page 33 of 2,694First3031323334353637Last